internal-gift128.c 51 KB
Newer Older
Rhys Weatherley committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/*
 * Copyright (C) 2020 Southern Storm Software, Pty Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "internal-gift128.h"
#include "internal-util.h"

#if !GIFT128_VARIANT_ASM

#if GIFT128_VARIANT != GIFT128_VARIANT_TINY

/* Round constants for GIFT-128 in the fixsliced representation */
static uint32_t const GIFT128_RC_fixsliced[40] = {
    0x10000008, 0x80018000, 0x54000002, 0x01010181, 0x8000001f, 0x10888880,
    0x6001e000, 0x51500002, 0x03030180, 0x8000002f, 0x10088880, 0x60016000,
    0x41500002, 0x03030080, 0x80000027, 0x10008880, 0x4001e000, 0x11500002,
    0x03020180, 0x8000002b, 0x10080880, 0x60014000, 0x01400002, 0x02020080,
    0x80000021, 0x10000080, 0x0001c000, 0x51000002, 0x03010180, 0x8000002e,
    0x10088800, 0x60012000, 0x40500002, 0x01030080, 0x80000006, 0x10008808,
    0xc001a000, 0x14500002, 0x01020181, 0x8000001a
};

#endif

#if GIFT128_VARIANT != GIFT128_VARIANT_FULL

/* Round constants for GIFT-128 in the bitsliced representation */
static uint8_t const GIFT128_RC[40] = {
    0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3E, 0x3D, 0x3B,
    0x37, 0x2F, 0x1E, 0x3C, 0x39, 0x33, 0x27, 0x0E,
    0x1D, 0x3A, 0x35, 0x2B, 0x16, 0x2C, 0x18, 0x30,
    0x21, 0x02, 0x05, 0x0B, 0x17, 0x2E, 0x1C, 0x38,
    0x31, 0x23, 0x06, 0x0D, 0x1B, 0x36, 0x2D, 0x1A
};

#endif

/* http://programming.sirrida.de/perm_fn.html#bit_permute_step */
#define bit_permute_step(_y, mask, shift) \
    do { \
        uint32_t y = (_y); \
        uint32_t t = ((y >> (shift)) ^ y) & (mask); \
        (_y) = (y ^ t) ^ (t << (shift)); \
    } while (0)

/*
 * The permutation below was generated by the online permuation generator at
 * "http://programming.sirrida.de/calcperm.php".
 *
 * All of the permutuations are essentially the same, except that each is
 * rotated by 8 bits with respect to the next:
 *
 * P0: 0 24 16 8 1 25 17 9 2 26 18 10 3 27 19 11 4 28 20 12 5 29 21 13 6 30 22 14 7 31 23 15
 * P1: 8 0 24 16 9 1 25 17 10 2 26 18 11 3 27 19 12 4 28 20 13 5 29 21 14 6 30 22 15 7 31 23
 * P2: 16 8 0 24 17 9 1 25 18 10 2 26 19 11 3 27 20 12 4 28 21 13 5 29 22 14 6 30 23 15 7 31
 * P3: 24 16 8 0 25 17 9 1 26 18 10 2 27 19 11 3 28 20 12 4 29 21 13 5 30 22 14 6 31 23 15 7
 *
 * The most efficient permutation from the online generator was P3, so we
 * perform it as the core of the others, and then perform a final rotation.
 *
 * It is possible to do slightly better than "P3 then rotate" on desktop and
 * server architectures for the other permutations.  But the advantage isn't
 * as evident on embedded platforms so we keep things simple.
 */
#define PERM3_INNER(x) \
    do { \
        bit_permute_step(x, 0x0a0a0a0a, 3); \
        bit_permute_step(x, 0x00cc00cc, 6); \
        bit_permute_step(x, 0x0000f0f0, 12); \
        bit_permute_step(x, 0x000000ff, 24); \
    } while (0)
#define PERM0(x) \
    do { \
        uint32_t _x = (x); \
        PERM3_INNER(_x); \
        (x) = leftRotate8(_x); \
    } while (0)
#define PERM1(x) \
    do { \
        uint32_t _x = (x); \
        PERM3_INNER(_x); \
        (x) = leftRotate16(_x); \
    } while (0)
#define PERM2(x) \
    do { \
        uint32_t _x = (x); \
        PERM3_INNER(_x); \
        (x) = leftRotate24(_x); \
    } while (0)
#define PERM3(x) \
    do { \
        uint32_t _x = (x); \
        PERM3_INNER(_x); \
        (x) = _x; \
    } while (0)

#define INV_PERM3_INNER(x) \
    do { \
        bit_permute_step(x, 0x00550055, 9); \
        bit_permute_step(x, 0x00003333, 18); \
        bit_permute_step(x, 0x000f000f, 12); \
        bit_permute_step(x, 0x000000ff, 24); \
    } while (0)
#define INV_PERM0(x) \
    do { \
        uint32_t _x = rightRotate8(x); \
        INV_PERM3_INNER(_x); \
        (x) = _x; \
    } while (0)
#define INV_PERM1(x) \
    do { \
        uint32_t _x = rightRotate16(x); \
        INV_PERM3_INNER(_x); \
        (x) = _x; \
    } while (0)
#define INV_PERM2(x) \
    do { \
        uint32_t _x = rightRotate24(x); \
        INV_PERM3_INNER(_x); \
        (x) = _x; \
    } while (0)
#define INV_PERM3(x) \
    do { \
        uint32_t _x = (x); \
        INV_PERM3_INNER(_x); \
        (x) = _x; \
    } while (0)

/**
 * \brief Converts the GIFT-128 nibble-based representation into word-based.
 *
 * \param output Output buffer to write the word-based version to.
 * \param input Input buffer to read the nibble-based version from.
 *
 * The \a input and \a output buffers can be the same buffer.
 */
static void gift128n_to_words
    (unsigned char *output, const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;

    /* Load the input buffer into 32-bit words.  We use the nibble order
     * from the HYENA submission to NIST which is byte-reversed with respect
     * to the nibble order of the original GIFT-128 paper.  Nibble zero is in
     * the first byte instead of the last, which means little-endian order. */
    s0 = le_load_word32(input + 12);
    s1 = le_load_word32(input + 8);
    s2 = le_load_word32(input + 4);
    s3 = le_load_word32(input);

    /* Rearrange the bits so that bits 0..3 of each nibble are
     * scattered to bytes 0..3 of each word.  The permutation is:
     *
     * 0 8 16 24 1 9 17 25 2 10 18 26 3 11 19 27 4 12 20 28 5 13 21 29 6 14 22 30 7 15 23 31
     *
     * Generated with "http://programming.sirrida.de/calcperm.php".
     */
    #define PERM_WORDS(_x) \
        do { \
            uint32_t x = (_x); \
            bit_permute_step(x, 0x0a0a0a0a, 3); \
            bit_permute_step(x, 0x00cc00cc, 6); \
            bit_permute_step(x, 0x0000f0f0, 12); \
            bit_permute_step(x, 0x0000ff00, 8); \
            (_x) = x; \
        } while (0)
    PERM_WORDS(s0);
    PERM_WORDS(s1);
    PERM_WORDS(s2);
    PERM_WORDS(s3);

    /* Rearrange the bytes and write them to the output buffer */
    output[0]  = (uint8_t)s0;
    output[1]  = (uint8_t)s1;
    output[2]  = (uint8_t)s2;
    output[3]  = (uint8_t)s3;
    output[4]  = (uint8_t)(s0 >> 8);
    output[5]  = (uint8_t)(s1 >> 8);
    output[6]  = (uint8_t)(s2 >> 8);
    output[7]  = (uint8_t)(s3 >> 8);
    output[8]  = (uint8_t)(s0 >> 16);
    output[9]  = (uint8_t)(s1 >> 16);
    output[10] = (uint8_t)(s2 >> 16);
    output[11] = (uint8_t)(s3 >> 16);
    output[12] = (uint8_t)(s0 >> 24);
    output[13] = (uint8_t)(s1 >> 24);
    output[14] = (uint8_t)(s2 >> 24);
    output[15] = (uint8_t)(s3 >> 24);
}

/**
 * \brief Converts the GIFT-128 word-based representation into nibble-based.
 *
 * \param output Output buffer to write the nibble-based version to.
 * \param input Input buffer to read the word-based version from.
 */
static void gift128n_to_nibbles
    (unsigned char *output, const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;

    /* Load the input bytes and rearrange them so that s0 contains the
     * most significant nibbles and s3 contains the least significant */
    s0 = (((uint32_t)(input[12])) << 24) |
         (((uint32_t)(input[8]))  << 16) |
         (((uint32_t)(input[4]))  <<  8) |
          ((uint32_t)(input[0]));
    s1 = (((uint32_t)(input[13])) << 24) |
         (((uint32_t)(input[9]))  << 16) |
         (((uint32_t)(input[5]))  <<  8) |
          ((uint32_t)(input[1]));
    s2 = (((uint32_t)(input[14])) << 24) |
         (((uint32_t)(input[10])) << 16) |
         (((uint32_t)(input[6]))  <<  8) |
          ((uint32_t)(input[2]));
    s3 = (((uint32_t)(input[15])) << 24) |
         (((uint32_t)(input[11])) << 16) |
         (((uint32_t)(input[7]))  <<  8) |
          ((uint32_t)(input[3]));

    /* Apply the inverse of PERM_WORDS() from the function above */
    #define INV_PERM_WORDS(_x) \
        do { \
            uint32_t x = (_x); \
            bit_permute_step(x, 0x00aa00aa, 7); \
            bit_permute_step(x, 0x0000cccc, 14); \
            bit_permute_step(x, 0x00f000f0, 4); \
            bit_permute_step(x, 0x0000ff00, 8); \
            (_x) = x; \
        } while (0)
    INV_PERM_WORDS(s0);
    INV_PERM_WORDS(s1);
    INV_PERM_WORDS(s2);
    INV_PERM_WORDS(s3);

    /* Store the result into the output buffer as 32-bit words */
    le_store_word32(output + 12, s0);
    le_store_word32(output + 8,  s1);
    le_store_word32(output + 4,  s2);
    le_store_word32(output,      s3);
}

void gift128n_encrypt
    (const gift128n_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    gift128n_to_words(output, input);
    gift128b_encrypt(ks, output, output);
    gift128n_to_nibbles(output, output);
}

void gift128n_decrypt
    (const gift128n_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    gift128n_to_words(output, input);
    gift128b_decrypt(ks, output, output);
    gift128n_to_nibbles(output, output);
}

#if GIFT128_VARIANT != GIFT128_VARIANT_TINY

/**
 * \brief Swaps bits within two words.
 *
 * \param a The first word.
 * \param b The second word.
 * \param mask Mask for the bits to shift.
 * \param shift Shift amount in bits.
 */
#define gift128b_swap_move(a, b, mask, shift) \
    do { \
        uint32_t tmp = ((b) ^ ((a) >> (shift))) & (mask); \
        (b) ^= tmp; \
        (a) ^= tmp << (shift); \
    } while (0)

/**
 * \brief Derives the next 10 fixsliced keys in the key schedule.
 *
 * \param next Points to the buffer to receive the next 10 keys.
 * \param prev Points to the buffer holding the previous 10 keys.
 *
 * The \a next and \a prev buffers are allowed to be the same.
 */
#define gift128b_derive_keys(next, prev) \
    do { \
        /* Key 0 */ \
        uint32_t s = (prev)[0]; \
        uint32_t t = (prev)[1]; \
        gift128b_swap_move(t, t, 0x00003333U, 16); \
        gift128b_swap_move(t, t, 0x55554444U, 1); \
        (next)[0] = t; \
        /* Key 1 */ \
        s = leftRotate8(s & 0x33333333U) | leftRotate16(s & 0xCCCCCCCCU); \
        gift128b_swap_move(s, s, 0x55551100U, 1); \
        (next)[1] = s; \
        /* Key 2 */ \
        s = (prev)[2]; \
        t = (prev)[3]; \
        (next)[2] = ((t >> 4) & 0x0F000F00U) | ((t & 0x0F000F00U) << 4) | \
                    ((t >> 6) & 0x00030003U) | ((t & 0x003F003FU) << 2); \
        /* Key 3 */ \
        (next)[3] = ((s >> 6) & 0x03000300U) | ((s & 0x3F003F00U) << 2) | \
                    ((s >> 5) & 0x00070007U) | ((s & 0x001F001FU) << 3); \
        /* Key 4 */ \
        s = (prev)[4]; \
        t = (prev)[5]; \
        (next)[4] = leftRotate8(t & 0xAAAAAAAAU) | \
                   leftRotate16(t & 0x55555555U); \
        /* Key 5 */ \
        (next)[5] = leftRotate8(s & 0x55555555U) | \
                   leftRotate12(s & 0xAAAAAAAAU); \
        /* Key 6 */ \
        s = (prev)[6]; \
        t = (prev)[7]; \
        (next)[6] = ((t >> 2) & 0x03030303U) | ((t & 0x03030303U) << 2) | \
                    ((t >> 1) & 0x70707070U) | ((t & 0x10101010U) << 3); \
        /* Key 7 */ \
	(next)[7] = ((s >> 18) & 0x00003030U) | ((s & 0x01010101U) << 3)  | \
                    ((s >> 14) & 0x0000C0C0U) | ((s & 0x0000E0E0U) << 15) | \
                    ((s >>  1) & 0x07070707U) | ((s & 0x00001010U) << 19); \
        /* Key 8 */ \
        s = (prev)[8]; \
        t = (prev)[9]; \
        (next)[8] = ((t >> 4) & 0x0FFF0000U) | ((t & 0x000F0000U) << 12) | \
                    ((t >> 8) & 0x000000FFU) | ((t & 0x000000FFU) << 8); \
        /* Key 9 */ \
        (next)[9] = ((s >> 6) & 0x03FF0000U) | ((s & 0x003F0000U) << 10) | \
                    ((s >> 4) & 0x00000FFFU) | ((s & 0x0000000FU) << 12); \
    } while (0)

/**
 * \brief Compute the round keys for GIFT-128 in the fixsliced representation.
 *
 * \param ks Points to the key schedule to initialize.
 * \param k0 First key word.
 * \param k1 Second key word.
 * \param k2 Third key word.
 * \param k3 Fourth key word.
 */
static void gift128b_compute_round_keys
    (gift128b_key_schedule_t *ks,
     uint32_t k0, uint32_t k1, uint32_t k2, uint32_t k3)
{
    unsigned index;
    uint32_t temp;

    /* Set the regular key with k0 and k3 pre-swapped for the round function */
    ks->k[0] = k3;
    ks->k[1] = k1;
    ks->k[2] = k2;
    ks->k[3] = k0;

    /* Pre-compute the keys for rounds 3..10 and permute into fixsliced form */
    for (index = 4; index < 20; index += 2) {
        ks->k[index] = ks->k[index - 3];
        temp = ks->k[index - 4];
        temp = ((temp & 0xFFFC0000U) >> 2) | ((temp & 0x00030000U) << 14) |
               ((temp & 0x00000FFFU) << 4) | ((temp & 0x0000F000U) >> 12);
        ks->k[index + 1] = temp;
    }
    for (index = 0; index < 20; index += 10) {
        /* Keys 0 and 10 */
        temp = ks->k[index];
        gift128b_swap_move(temp, temp, 0x00550055U, 9);
        gift128b_swap_move(temp, temp, 0x000F000FU, 12);
        gift128b_swap_move(temp, temp, 0x00003333U, 18);
        gift128b_swap_move(temp, temp, 0x000000FFU, 24);
        ks->k[index] = temp;

        /* Keys 1 and 11 */
        temp = ks->k[index + 1];
        gift128b_swap_move(temp, temp, 0x00550055U, 9);
        gift128b_swap_move(temp, temp, 0x000F000FU, 12);
        gift128b_swap_move(temp, temp, 0x00003333U, 18);
        gift128b_swap_move(temp, temp, 0x000000FFU, 24);
        ks->k[index + 1] = temp;

        /* Keys 2 and 12 */
        temp = ks->k[index + 2];
        gift128b_swap_move(temp, temp, 0x11111111U, 3);
        gift128b_swap_move(temp, temp, 0x03030303U, 6);
        gift128b_swap_move(temp, temp, 0x000F000FU, 12);
        gift128b_swap_move(temp, temp, 0x000000FFU, 24);
        ks->k[index + 2] = temp;

        /* Keys 3 and 13 */
        temp = ks->k[index + 3];
        gift128b_swap_move(temp, temp, 0x11111111U, 3);
        gift128b_swap_move(temp, temp, 0x03030303U, 6);
        gift128b_swap_move(temp, temp, 0x000F000FU, 12);
        gift128b_swap_move(temp, temp, 0x000000FFU, 24);
        ks->k[index + 3] = temp;

        /* Keys 4 and 14 */
        temp = ks->k[index + 4];
        gift128b_swap_move(temp, temp, 0x0000AAAAU, 15);
        gift128b_swap_move(temp, temp, 0x00003333U, 18);
        gift128b_swap_move(temp, temp, 0x0000F0F0U, 12);
        gift128b_swap_move(temp, temp, 0x000000FFU, 24);
        ks->k[index + 4] = temp;

        /* Keys 5 and 15 */
        temp = ks->k[index + 5];
        gift128b_swap_move(temp, temp, 0x0000AAAAU, 15);
        gift128b_swap_move(temp, temp, 0x00003333U, 18);
        gift128b_swap_move(temp, temp, 0x0000F0F0U, 12);
        gift128b_swap_move(temp, temp, 0x000000FFU, 24);
        ks->k[index + 5] = temp;

        /* Keys 6 and 16 */
        temp = ks->k[index + 6];
        gift128b_swap_move(temp, temp, 0x0A0A0A0AU, 3);
        gift128b_swap_move(temp, temp, 0x00CC00CCU, 6);
        gift128b_swap_move(temp, temp, 0x0000F0F0U, 12);
        gift128b_swap_move(temp, temp, 0x000000FFU, 24);
        ks->k[index + 6] = temp;

        /* Keys 7 and 17 */
        temp = ks->k[index + 7];
        gift128b_swap_move(temp, temp, 0x0A0A0A0AU, 3);
        gift128b_swap_move(temp, temp, 0x00CC00CCU, 6);
        gift128b_swap_move(temp, temp, 0x0000F0F0U, 12);
        gift128b_swap_move(temp, temp, 0x000000FFU, 24);
        ks->k[index + 7] = temp;

        /* Keys 8, 9, 18, and 19 do not need any adjustment */
    }

#if GIFT128_VARIANT == GIFT128_VARIANT_FULL
    /* Derive the fixsliced keys for the remaining rounds 11..40 */
    for (index = 20; index < 80; index += 10) {
        gift128b_derive_keys(ks->k + index, ks->k + index - 20);
    }
#endif
}

void gift128b_init(gift128b_key_schedule_t *ks, const unsigned char *key)
{
    gift128b_compute_round_keys
        (ks, be_load_word32(key), be_load_word32(key + 4),
             be_load_word32(key + 8), be_load_word32(key + 12));
}

void gift128n_init(gift128n_key_schedule_t *ks, const unsigned char *key)
{
    /* Use the little-endian key byte order from the HYENA submission */
    gift128b_compute_round_keys
        (ks, le_load_word32(key + 12), le_load_word32(key + 8),
             le_load_word32(key + 4), le_load_word32(key));
}

/**
 * \brief Performs the GIFT-128 S-box on the bit-sliced state.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_sbox(s0, s1, s2, s3) \
    do { \
        s1 ^= s0 & s2; \
        s0 ^= s1 & s3; \
        s2 ^= s0 | s1; \
        s3 ^= s2; \
        s1 ^= s3; \
        s3 ^= 0xFFFFFFFFU; \
        s2 ^= s0 & s1; \
    } while (0)

/**
 * \brief Performs the inverse of the GIFT-128 S-box on the bit-sliced state.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_inv_sbox(s0, s1, s2, s3) \
    do { \
        s2 ^= s3 & s1; \
        s0 ^= 0xFFFFFFFFU; \
        s1 ^= s0; \
        s0 ^= s2; \
        s2 ^= s3 | s1; \
        s3 ^= s1 & s0; \
        s1 ^= s3 & s2; \
    } while (0)

/**
 * \brief Permutes the GIFT-128 state between the 1st and 2nd mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_permute_state_1(s0, s1, s2, s3) \
    do { \
        s1 = ((s1 >> 2) & 0x33333333U) | ((s1 & 0x33333333U) << 2); \
        s2 = ((s2 >> 3) & 0x11111111U) | ((s2 & 0x77777777U) << 1); \
        s3 = ((s3 >> 1) & 0x77777777U) | ((s3 & 0x11111111U) << 3); \
    } while (0);

/**
 * \brief Permutes the GIFT-128 state between the 2nd and 3rd mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_permute_state_2(s0, s1, s2, s3) \
    do { \
        s0 = ((s0 >>  4) & 0x0FFF0FFFU) | ((s0 & 0x000F000FU) << 12); \
        s1 = ((s1 >>  8) & 0x00FF00FFU) | ((s1 & 0x00FF00FFU) << 8); \
        s2 = ((s2 >> 12) & 0x000F000FU) | ((s2 & 0x0FFF0FFFU) << 4); \
    } while (0);

/**
 * \brief Permutes the GIFT-128 state between the 3rd and 4th mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_permute_state_3(s0, s1, s2, s3) \
    do { \
        gift128b_swap_move(s1, s1, 0x55555555U, 1); \
        s2 = leftRotate16(s2); \
        gift128b_swap_move(s2, s2, 0x00005555U, 1); \
        s3 = leftRotate16(s3); \
        gift128b_swap_move(s3, s3, 0x55550000U, 1); \
    } while (0);

/**
 * \brief Permutes the GIFT-128 state between the 4th and 5th mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_permute_state_4(s0, s1, s2, s3) \
    do { \
        s0 = ((s0 >> 6) & 0x03030303U) | ((s0 & 0x3F3F3F3FU) << 2); \
        s1 = ((s1 >> 4) & 0x0F0F0F0FU) | ((s1 & 0x0F0F0F0FU) << 4); \
        s2 = ((s2 >> 2) & 0x3F3F3F3FU) | ((s2 & 0x03030303U) << 6); \
    } while (0);

/**
 * \brief Permutes the GIFT-128 state between the 5th and 1st mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_permute_state_5(s0, s1, s2, s3) \
    do { \
        s1 = leftRotate16(s1); \
        s2 = rightRotate8(s2); \
        s3 = leftRotate8(s3); \
    } while (0);

/**
 * \brief Inverts the GIFT-128 state between the 1st and 2nd mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_inv_permute_state_1(s0, s1, s2, s3) \
    do { \
        s1 = ((s1 >> 2) & 0x33333333U) | ((s1 & 0x33333333U) << 2); \
        s2 = ((s2 >> 1) & 0x77777777U) | ((s2 & 0x11111111U) << 3); \
        s3 = ((s3 >> 3) & 0x11111111U) | ((s3 & 0x77777777U) << 1); \
    } while (0);

/**
 * \brief Inverts the GIFT-128 state between the 2nd and 3rd mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_inv_permute_state_2(s0, s1, s2, s3) \
    do { \
        s0 = ((s0 >> 12) & 0x000F000FU) | ((s0 & 0x0FFF0FFFU) << 4); \
        s1 = ((s1 >>  8) & 0x00FF00FFU) | ((s1 & 0x00FF00FFU) << 8); \
        s2 = ((s2 >>  4) & 0x0FFF0FFFU) | ((s2 & 0x000F000FU) << 12); \
    } while (0);

/**
 * \brief Inverts the GIFT-128 state between the 3rd and 4th mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_inv_permute_state_3(s0, s1, s2, s3) \
    do { \
        gift128b_swap_move(s1, s1, 0x55555555U, 1); \
        gift128b_swap_move(s2, s2, 0x00005555U, 1); \
        s2 = leftRotate16(s2); \
        gift128b_swap_move(s3, s3, 0x55550000U, 1); \
        s3 = leftRotate16(s3); \
    } while (0);

/**
 * \brief Inverts the GIFT-128 state between the 4th and 5th mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_inv_permute_state_4(s0, s1, s2, s3) \
    do { \
        s0 = ((s0 >> 2) & 0x3F3F3F3FU) | ((s0 & 0x03030303U) << 6); \
        s1 = ((s1 >> 4) & 0x0F0F0F0FU) | ((s1 & 0x0F0F0F0FU) << 4); \
        s2 = ((s2 >> 6) & 0x03030303U) | ((s2 & 0x3F3F3F3FU) << 2); \
    } while (0);

/**
 * \brief Inverts the GIFT-128 state between the 5th and 1st mini-rounds.
 *
 * \param s0 First word of the bit-sliced state.
 * \param s1 Second word of the bit-sliced state.
 * \param s2 Third word of the bit-sliced state.
 * \param s3 Fourth word of the bit-sliced state.
 */
#define gift128b_inv_permute_state_5(s0, s1, s2, s3) \
    do { \
        s1 = leftRotate16(s1); \
        s2 = leftRotate8(s2); \
        s3 = rightRotate8(s3); \
    } while (0);

/**
 * \brief Performs five fixsliced encryption rounds for GIFT-128.
 *
 * \param rk Points to the 10 round keys for these rounds.
 * \param rc Points to the round constants for these rounds.
 *
 * We perform all 40 rounds of the fixsliced GIFT-128 five at a time.
 *
 * The permutation is restructured so that one of the words each round
 * does not need to be permuted, with the others rotating left, up, right,
 * and down to keep the bits in line with their non-moving counterparts.
 * This reduces the number of shifts required significantly.
 *
 * At the end of five rounds, the bit ordering will return to the
 * original position.  We then repeat the process for the next 5 rounds.
 */
#define gift128b_encrypt_5_rounds(rk, rc) \
    do { \
        /* 1st round - S-box, rotate left, add round key */ \
        gift128b_sbox(s0, s1, s2, s3); \
        gift128b_permute_state_1(s0, s1, s2, s3); \
        s1 ^= (rk)[0]; \
        s2 ^= (rk)[1]; \
        s0 ^= (rc)[0]; \
        \
        /* 2nd round - S-box, rotate up, add round key */ \
        gift128b_sbox(s3, s1, s2, s0); \
        gift128b_permute_state_2(s0, s1, s2, s3); \
        s1 ^= (rk)[2]; \
        s2 ^= (rk)[3]; \
        s3 ^= (rc)[1]; \
        \
        /* 3rd round - S-box, swap columns, add round key */ \
        gift128b_sbox(s0, s1, s2, s3); \
        gift128b_permute_state_3(s0, s1, s2, s3); \
        s1 ^= (rk)[4]; \
        s2 ^= (rk)[5]; \
        s0 ^= (rc)[2]; \
        \
        /* 4th round - S-box, rotate left and swap rows, add round key */ \
        gift128b_sbox(s3, s1, s2, s0); \
        gift128b_permute_state_4(s0, s1, s2, s3); \
        s1 ^= (rk)[6]; \
        s2 ^= (rk)[7]; \
        s3 ^= (rc)[3]; \
        \
        /* 5th round - S-box, rotate up, add round key */ \
        gift128b_sbox(s0, s1, s2, s3); \
        gift128b_permute_state_5(s0, s1, s2, s3); \
        s1 ^= (rk)[8]; \
        s2 ^= (rk)[9]; \
        s0 ^= (rc)[4]; \
        \
        /* Swap s0 and s3 in preparation for the next 1st round */ \
        s0 ^= s3; \
        s3 ^= s0; \
        s0 ^= s3; \
    } while (0)

/**
 * \brief Performs five fixsliced decryption rounds for GIFT-128.
 *
 * \param rk Points to the 10 round keys for these rounds.
 * \param rc Points to the round constants for these rounds.
 *
 * We perform all 40 rounds of the fixsliced GIFT-128 five at a time.
 */
#define gift128b_decrypt_5_rounds(rk, rc) \
    do { \
        /* Swap s0 and s3 in preparation for the next 5th round */ \
        s0 ^= s3; \
        s3 ^= s0; \
        s0 ^= s3; \
        \
        /* 5th round - S-box, rotate down, add round key */ \
        s1 ^= (rk)[8]; \
        s2 ^= (rk)[9]; \
        s0 ^= (rc)[4]; \
        gift128b_inv_permute_state_5(s0, s1, s2, s3); \
        gift128b_inv_sbox(s3, s1, s2, s0); \
        \
        /* 4th round - S-box, rotate right and swap rows, add round key */ \
        s1 ^= (rk)[6]; \
        s2 ^= (rk)[7]; \
        s3 ^= (rc)[3]; \
        gift128b_inv_permute_state_4(s0, s1, s2, s3); \
        gift128b_inv_sbox(s0, s1, s2, s3); \
        \
        /* 3rd round - S-box, swap columns, add round key */ \
        s1 ^= (rk)[4]; \
        s2 ^= (rk)[5]; \
        s0 ^= (rc)[2]; \
        gift128b_inv_permute_state_3(s0, s1, s2, s3); \
        gift128b_inv_sbox(s3, s1, s2, s0); \
        \
        /* 2nd round - S-box, rotate down, add round key */ \
        s1 ^= (rk)[2]; \
        s2 ^= (rk)[3]; \
        s3 ^= (rc)[1]; \
        gift128b_inv_permute_state_2(s0, s1, s2, s3); \
        gift128b_inv_sbox(s0, s1, s2, s3); \
        \
        /* 1st round - S-box, rotate right, add round key */ \
        s1 ^= (rk)[0]; \
        s2 ^= (rk)[1]; \
        s0 ^= (rc)[0]; \
        gift128b_inv_permute_state_1(s0, s1, s2, s3); \
        gift128b_inv_sbox(s3, s1, s2, s0); \
    } while (0)

#else /* GIFT128_VARIANT_TINY */

void gift128b_init(gift128b_key_schedule_t *ks, const unsigned char *key)
{
    /* Mirror the fixslicing word order of 3, 1, 2, 0 */
    ks->k[0] = be_load_word32(key + 12);
    ks->k[1] = be_load_word32(key + 4);
    ks->k[2] = be_load_word32(key + 8);
    ks->k[3] = be_load_word32(key);
}

void gift128n_init(gift128n_key_schedule_t *ks, const unsigned char *key)
{
    /* Use the little-endian key byte order from the HYENA submission
     * and mirror the fixslicing word order of 3, 1, 2, 0 */
    ks->k[0] = le_load_word32(key);
    ks->k[1] = le_load_word32(key + 8);
    ks->k[2] = le_load_word32(key + 4);
    ks->k[3] = le_load_word32(key + 12);
}

#endif /* GIFT128_VARIANT_TINY */

#if GIFT128_VARIANT == GIFT128_VARIANT_SMALL

void gift128b_encrypt
    (const gift128b_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t k[20];

    /* Copy the plaintext into the state buffer and convert from big endian */
    s0 = be_load_word32(input);
    s1 = be_load_word32(input + 4);
    s2 = be_load_word32(input + 8);
    s3 = be_load_word32(input + 12);

    /* Perform all 40 rounds five at a time using the fixsliced method */
    gift128b_encrypt_5_rounds(ks->k, GIFT128_RC_fixsliced);
    gift128b_encrypt_5_rounds(ks->k + 10, GIFT128_RC_fixsliced + 5);
    gift128b_derive_keys(k, ks->k);
    gift128b_derive_keys(k + 10, ks->k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 10);
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 15);
    gift128b_derive_keys(k, k);
    gift128b_derive_keys(k + 10, k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 20);
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 25);
    gift128b_derive_keys(k, k);
    gift128b_derive_keys(k + 10, k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 30);
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 35);

    /* Pack the state into the ciphertext buffer in big endian */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
}

void gift128b_encrypt_preloaded
    (const gift128b_key_schedule_t *ks, uint32_t output[4],
     const uint32_t input[4])
{
    uint32_t s0, s1, s2, s3;
    uint32_t k[20];

    /* Copy the plaintext into local variables */
    s0 = input[0];
    s1 = input[1];
    s2 = input[2];
    s3 = input[3];

    /* Perform all 40 rounds five at a time using the fixsliced method */
    gift128b_encrypt_5_rounds(ks->k, GIFT128_RC_fixsliced);
    gift128b_encrypt_5_rounds(ks->k + 10, GIFT128_RC_fixsliced + 5);
    gift128b_derive_keys(k, ks->k);
    gift128b_derive_keys(k + 10, ks->k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 10);
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 15);
    gift128b_derive_keys(k, k);
    gift128b_derive_keys(k + 10, k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 20);
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 25);
    gift128b_derive_keys(k, k);
    gift128b_derive_keys(k + 10, k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 30);
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 35);

    /* Pack the state into the ciphertext buffer */
    output[0] = s0;
    output[1] = s1;
    output[2] = s2;
    output[3] = s3;
}

void gift128t_encrypt
    (const gift128n_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input, uint32_t tweak)
{
    uint32_t s0, s1, s2, s3;
    uint32_t k[20];

    /* Copy the plaintext into the state buffer and convert from nibbles */
    gift128n_to_words(output, input);
    s0 = be_load_word32(output);
    s1 = be_load_word32(output + 4);
    s2 = be_load_word32(output + 8);
    s3 = be_load_word32(output + 12);

    /* Perform all 40 rounds five at a time using the fixsliced method.
     * Every 5 rounds except the last we add the tweak value to the state */
    gift128b_encrypt_5_rounds(ks->k, GIFT128_RC_fixsliced);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(ks->k + 10, GIFT128_RC_fixsliced + 5);
    s0 ^= tweak;
    gift128b_derive_keys(k, ks->k);
    gift128b_derive_keys(k + 10, ks->k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 10);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 15);
    s0 ^= tweak;
    gift128b_derive_keys(k, k);
    gift128b_derive_keys(k + 10, k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 20);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 25);
    s0 ^= tweak;
    gift128b_derive_keys(k, k);
    gift128b_derive_keys(k + 10, k + 10);
    gift128b_encrypt_5_rounds(k, GIFT128_RC_fixsliced + 30);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(k + 10, GIFT128_RC_fixsliced + 35);

    /* Pack the state into the ciphertext buffer in nibble form */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
    gift128n_to_nibbles(output, output);
}

#elif GIFT128_VARIANT == GIFT128_VARIANT_FULL

void gift128b_encrypt
    (const gift128b_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;

    /* Copy the plaintext into the state buffer and convert from big endian */
    s0 = be_load_word32(input);
    s1 = be_load_word32(input + 4);
    s2 = be_load_word32(input + 8);
    s3 = be_load_word32(input + 12);

    /* Perform all 40 rounds five at a time using the fixsliced method */
    gift128b_encrypt_5_rounds(ks->k, GIFT128_RC_fixsliced);
    gift128b_encrypt_5_rounds(ks->k + 10, GIFT128_RC_fixsliced + 5);
    gift128b_encrypt_5_rounds(ks->k + 20, GIFT128_RC_fixsliced + 10);
    gift128b_encrypt_5_rounds(ks->k + 30, GIFT128_RC_fixsliced + 15);
    gift128b_encrypt_5_rounds(ks->k + 40, GIFT128_RC_fixsliced + 20);
    gift128b_encrypt_5_rounds(ks->k + 50, GIFT128_RC_fixsliced + 25);
    gift128b_encrypt_5_rounds(ks->k + 60, GIFT128_RC_fixsliced + 30);
    gift128b_encrypt_5_rounds(ks->k + 70, GIFT128_RC_fixsliced + 35);

    /* Pack the state into the ciphertext buffer in big endian */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
}

void gift128b_encrypt_preloaded
    (const gift128b_key_schedule_t *ks, uint32_t output[4],
     const uint32_t input[4])
{
    uint32_t s0, s1, s2, s3;

    /* Copy the plaintext into local variables */
    s0 = input[0];
    s1 = input[1];
    s2 = input[2];
    s3 = input[3];

    /* Perform all 40 rounds five at a time using the fixsliced method */
    gift128b_encrypt_5_rounds(ks->k, GIFT128_RC_fixsliced);
    gift128b_encrypt_5_rounds(ks->k + 10, GIFT128_RC_fixsliced + 5);
    gift128b_encrypt_5_rounds(ks->k + 20, GIFT128_RC_fixsliced + 10);
    gift128b_encrypt_5_rounds(ks->k + 30, GIFT128_RC_fixsliced + 15);
    gift128b_encrypt_5_rounds(ks->k + 40, GIFT128_RC_fixsliced + 20);
    gift128b_encrypt_5_rounds(ks->k + 50, GIFT128_RC_fixsliced + 25);
    gift128b_encrypt_5_rounds(ks->k + 60, GIFT128_RC_fixsliced + 30);
    gift128b_encrypt_5_rounds(ks->k + 70, GIFT128_RC_fixsliced + 35);

    /* Pack the state into the ciphertext buffer */
    output[0] = s0;
    output[1] = s1;
    output[2] = s2;
    output[3] = s3;
}

void gift128t_encrypt
    (const gift128n_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input, uint32_t tweak)
{
    uint32_t s0, s1, s2, s3;

    /* Copy the plaintext into the state buffer and convert from nibbles */
    gift128n_to_words(output, input);
    s0 = be_load_word32(output);
    s1 = be_load_word32(output + 4);
    s2 = be_load_word32(output + 8);
    s3 = be_load_word32(output + 12);

    /* Perform all 40 rounds five at a time using the fixsliced method.
     * Every 5 rounds except the last we add the tweak value to the state */
    gift128b_encrypt_5_rounds(ks->k, GIFT128_RC_fixsliced);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(ks->k + 10, GIFT128_RC_fixsliced + 5);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(ks->k + 20, GIFT128_RC_fixsliced + 10);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(ks->k + 30, GIFT128_RC_fixsliced + 15);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(ks->k + 40, GIFT128_RC_fixsliced + 20);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(ks->k + 50, GIFT128_RC_fixsliced + 25);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(ks->k + 60, GIFT128_RC_fixsliced + 30);
    s0 ^= tweak;
    gift128b_encrypt_5_rounds(ks->k + 70, GIFT128_RC_fixsliced + 35);

    /* Pack the state into the ciphertext buffer in nibble form */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
    gift128n_to_nibbles(output, output);
}

#else /* GIFT128_VARIANT_TINY */

void gift128b_encrypt
    (const gift128b_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t w0, w1, w2, w3;
    uint32_t temp;
    uint8_t round;

    /* Copy the plaintext into the state buffer and convert from big endian */
    s0 = be_load_word32(input);
    s1 = be_load_word32(input + 4);
    s2 = be_load_word32(input + 8);
    s3 = be_load_word32(input + 12);

    /* The key schedule is initialized with the key itself */
    w0 = ks->k[3];
    w1 = ks->k[1];
    w2 = ks->k[2];
    w3 = ks->k[0];

    /* Perform all 40 rounds */
    for (round = 0; round < 40; ++round) {
        /* SubCells - apply the S-box */
        s1 ^= s0 & s2;
        s0 ^= s1 & s3;
        s2 ^= s0 | s1;
        s3 ^= s2;
        s1 ^= s3;
        s3 ^= 0xFFFFFFFFU;
        s2 ^= s0 & s1;
        temp = s0;
        s0 = s3;
        s3 = temp;

        /* PermBits - apply the 128-bit permutation */
        PERM0(s0);
        PERM1(s1);
        PERM2(s2);
        PERM3(s3);

        /* AddRoundKey - XOR in the key schedule and the round constant */
        s2 ^= w1;
        s1 ^= w3;
        s3 ^= 0x80000000U ^ GIFT128_RC[round];

        /* Rotate the key schedule */
        temp = w3;
        w3 = w2;
        w2 = w1;
        w1 = w0;
        w0 = ((temp & 0xFFFC0000U) >> 2) | ((temp & 0x00030000U) << 14) |
             ((temp & 0x00000FFFU) << 4) | ((temp & 0x0000F000U) >> 12);
    }

    /* Pack the state into the ciphertext buffer in big endian */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
}

void gift128b_encrypt_preloaded
    (const gift128b_key_schedule_t *ks, uint32_t output[4],
     const uint32_t input[4])
{
    uint32_t s0, s1, s2, s3;
    uint32_t w0, w1, w2, w3;
    uint32_t temp;
    uint8_t round;

    /* Copy the plaintext into the state buffer */
    s0 = input[0];
    s1 = input[1];
    s2 = input[2];
    s3 = input[3];

    /* The key schedule is initialized with the key itself */
    w0 = ks->k[3];
    w1 = ks->k[1];
    w2 = ks->k[2];
    w3 = ks->k[0];

    /* Perform all 40 rounds */
    for (round = 0; round < 40; ++round) {
        /* SubCells - apply the S-box */
        s1 ^= s0 & s2;
        s0 ^= s1 & s3;
        s2 ^= s0 | s1;
        s3 ^= s2;
        s1 ^= s3;
        s3 ^= 0xFFFFFFFFU;
        s2 ^= s0 & s1;
        temp = s0;
        s0 = s3;
        s3 = temp;

        /* PermBits - apply the 128-bit permutation */
        PERM0(s0);
        PERM1(s1);
        PERM2(s2);
        PERM3(s3);

        /* AddRoundKey - XOR in the key schedule and the round constant */
        s2 ^= w1;
        s1 ^= w3;
        s3 ^= 0x80000000U ^ GIFT128_RC[round];

        /* Rotate the key schedule */
        temp = w3;
        w3 = w2;
        w2 = w1;
        w1 = w0;
        w0 = ((temp & 0xFFFC0000U) >> 2) | ((temp & 0x00030000U) << 14) |
             ((temp & 0x00000FFFU) << 4) | ((temp & 0x0000F000U) >> 12);
    }

    /* Pack the state into the ciphertext buffer */
    output[0] = s0;
    output[1] = s1;
    output[2] = s2;
    output[3] = s3;
}

void gift128t_encrypt
    (const gift128n_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input, uint32_t tweak)
{
    uint32_t s0, s1, s2, s3;
    uint32_t w0, w1, w2, w3;
    uint32_t temp;
    uint8_t round;

    /* Copy the plaintext into the state buffer and convert from nibbles */
    gift128n_to_words(output, input);
    s0 = be_load_word32(output);
    s1 = be_load_word32(output + 4);
    s2 = be_load_word32(output + 8);
    s3 = be_load_word32(output + 12);

    /* The key schedule is initialized with the key itself */
    w0 = ks->k[3];
    w1 = ks->k[1];
    w2 = ks->k[2];
    w3 = ks->k[0];

    /* Perform all 40 rounds */
    for (round = 0; round < 40; ++round) {
        /* SubCells - apply the S-box */
        s1 ^= s0 & s2;
        s0 ^= s1 & s3;
        s2 ^= s0 | s1;
        s3 ^= s2;
        s1 ^= s3;
        s3 ^= 0xFFFFFFFFU;
        s2 ^= s0 & s1;
        temp = s0;
        s0 = s3;
        s3 = temp;

        /* PermBits - apply the 128-bit permutation */
        PERM0(s0);
        PERM1(s1);
        PERM2(s2);
        PERM3(s3);

        /* AddRoundKey - XOR in the key schedule and the round constant */
        s2 ^= w1;
        s1 ^= w3;
        s3 ^= 0x80000000U ^ GIFT128_RC[round];

        /* AddTweak - XOR in the tweak every 5 rounds except the last */
        if (((round + 1) % 5) == 0 && round < 39)
            s0 ^= tweak;

        /* Rotate the key schedule */
        temp = w3;
        w3 = w2;
        w2 = w1;
        w1 = w0;
        w0 = ((temp & 0xFFFC0000U) >> 2) | ((temp & 0x00030000U) << 14) |
             ((temp & 0x00000FFFU) << 4) | ((temp & 0x0000F000U) >> 12);
    }

    /* Pack the state into the ciphertext buffer in nibble form */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
    gift128n_to_nibbles(output, output);
}

#endif /* GIFT128_VARIANT_TINY */

#if GIFT128_VARIANT == GIFT128_VARIANT_FULL

void gift128b_decrypt
    (const gift128b_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;

    /* Copy the plaintext into the state buffer and convert from big endian */
    s0 = be_load_word32(input);
    s1 = be_load_word32(input + 4);
    s2 = be_load_word32(input + 8);
    s3 = be_load_word32(input + 12);

    /* Perform all 40 rounds five at a time using the fixsliced method */
    gift128b_decrypt_5_rounds(ks->k + 70, GIFT128_RC_fixsliced + 35);
    gift128b_decrypt_5_rounds(ks->k + 60, GIFT128_RC_fixsliced + 30);
    gift128b_decrypt_5_rounds(ks->k + 50, GIFT128_RC_fixsliced + 25);
    gift128b_decrypt_5_rounds(ks->k + 40, GIFT128_RC_fixsliced + 20);
    gift128b_decrypt_5_rounds(ks->k + 30, GIFT128_RC_fixsliced + 15);
    gift128b_decrypt_5_rounds(ks->k + 20, GIFT128_RC_fixsliced + 10);
    gift128b_decrypt_5_rounds(ks->k + 10, GIFT128_RC_fixsliced + 5);
    gift128b_decrypt_5_rounds(ks->k, GIFT128_RC_fixsliced);

    /* Pack the state into the ciphertext buffer in big endian */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
}

void gift128t_decrypt
    (const gift128n_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input, uint32_t tweak)
{
    uint32_t s0, s1, s2, s3;

    /* Copy the ciphertext into the state buffer and convert from nibbles */
    gift128n_to_words(output, input);
    s0 = be_load_word32(output);
    s1 = be_load_word32(output + 4);
    s2 = be_load_word32(output + 8);
    s3 = be_load_word32(output + 12);

    /* Perform all 40 rounds five at a time using the fixsliced method.
     * Every 5 rounds except the first we add the tweak value to the state */
    gift128b_decrypt_5_rounds(ks->k + 70, GIFT128_RC_fixsliced + 35);
    s0 ^= tweak;
    gift128b_decrypt_5_rounds(ks->k + 60, GIFT128_RC_fixsliced + 30);
    s0 ^= tweak;
    gift128b_decrypt_5_rounds(ks->k + 50, GIFT128_RC_fixsliced + 25);
    s0 ^= tweak;
    gift128b_decrypt_5_rounds(ks->k + 40, GIFT128_RC_fixsliced + 20);
    s0 ^= tweak;
    gift128b_decrypt_5_rounds(ks->k + 30, GIFT128_RC_fixsliced + 15);
    s0 ^= tweak;
    gift128b_decrypt_5_rounds(ks->k + 20, GIFT128_RC_fixsliced + 10);
    s0 ^= tweak;
    gift128b_decrypt_5_rounds(ks->k + 10, GIFT128_RC_fixsliced + 5);
    s0 ^= tweak;
    gift128b_decrypt_5_rounds(ks->k, GIFT128_RC_fixsliced);

    /* Pack the state into the plaintext buffer in nibble form */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
    gift128n_to_nibbles(output, output);
}

#else /* GIFT128_VARIANT_SMALL || GIFT128_VARIANT_TINY */

/* The small variant uses fixslicing for encryption, but we need to change
 * to bitslicing for decryption because of the difficulty of fast-forwarding
 * the fixsliced key schedule to the end.  So the tiny variant is used for
 * decryption when the small variant is selected.  Since the NIST AEAD modes
 * for GIFT-128 only use the block encrypt operation, the inefficiencies
 * in decryption don't matter all that much */

/**
 * \def gift128b_load_and_forward_schedule()
 * \brief Generate the decryption key at the end of the last round.
 *
 * To do that, we run the block operation forward to determine the
 * final state of the key schedule after the last round:
 *
 * w0 = ks->k[0];
 * w1 = ks->k[1];
 * w2 = ks->k[2];
 * w3 = ks->k[3];
 * for (round = 0; round < 40; ++round) {
 *     temp = w3;
 *     w3 = w2;
 *     w2 = w1;
 *     w1 = w0;
 *     w0 = ((temp & 0xFFFC0000U) >> 2) | ((temp & 0x00030000U) << 14) |
 *          ((temp & 0x00000FFFU) << 4) | ((temp & 0x0000F000U) >> 12);
 * }
 *
 * We can short-cut all of the above by noticing that we don't need
 * to do the word rotations.  Every 4 rounds, the rotation alignment
 * returns to the original position and each word has been rotated
 * by applying the "2 right and 4 left" bit-rotation step to it.
 * We then repeat that 10 times for the full 40 rounds.  The overall
 * effect is to apply a "20 right and 40 left" bit-rotation to every
 * word in the key schedule.  That is equivalent to "4 right and 8 left"
 * on the 16-bit sub-words.
 */
#if GIFT128_VARIANT != GIFT128_VARIANT_SMALL
#define gift128b_load_and_forward_schedule() \
    do { \
        w0 = ks->k[3]; \
        w1 = ks->k[1]; \
        w2 = ks->k[2]; \
        w3 = ks->k[0]; \
        w0 = ((w0 & 0xFFF00000U) >> 4) | ((w0 & 0x000F0000U) << 12) | \
             ((w0 & 0x000000FFU) << 8) | ((w0 & 0x0000FF00U) >> 8);   \
        w1 = ((w1 & 0xFFF00000U) >> 4) | ((w1 & 0x000F0000U) << 12) | \
             ((w1 & 0x000000FFU) << 8) | ((w1 & 0x0000FF00U) >> 8);   \
        w2 = ((w2 & 0xFFF00000U) >> 4) | ((w2 & 0x000F0000U) << 12) | \
             ((w2 & 0x000000FFU) << 8) | ((w2 & 0x0000FF00U) >> 8);   \
        w3 = ((w3 & 0xFFF00000U) >> 4) | ((w3 & 0x000F0000U) << 12) | \
             ((w3 & 0x000000FFU) << 8) | ((w3 & 0x0000FF00U) >> 8);   \
    } while (0)
#else
/* The small variant needs to also undo some of the rotations that were
 * done to generate the fixsliced version of the key schedule */
#define gift128b_load_and_forward_schedule() \
    do { \
        w0 = ks->k[3]; \
        w1 = ks->k[1]; \
        w2 = ks->k[2]; \
        w3 = ks->k[0]; \
        gift128b_swap_move(w3, w3, 0x000000FFU, 24); \
        gift128b_swap_move(w3, w3, 0x00003333U, 18); \
        gift128b_swap_move(w3, w3, 0x000F000FU, 12); \
        gift128b_swap_move(w3, w3, 0x00550055U, 9);  \
        gift128b_swap_move(w1, w1, 0x000000FFU, 24); \
        gift128b_swap_move(w1, w1, 0x00003333U, 18); \
        gift128b_swap_move(w1, w1, 0x000F000FU, 12); \
        gift128b_swap_move(w1, w1, 0x00550055U, 9);  \
        gift128b_swap_move(w2, w2, 0x000000FFU, 24); \
        gift128b_swap_move(w2, w2, 0x000F000FU, 12); \
        gift128b_swap_move(w2, w2, 0x03030303U, 6);  \
        gift128b_swap_move(w2, w2, 0x11111111U, 3);  \
        gift128b_swap_move(w0, w0, 0x000000FFU, 24); \
        gift128b_swap_move(w0, w0, 0x000F000FU, 12); \
        gift128b_swap_move(w0, w0, 0x03030303U, 6);  \
        gift128b_swap_move(w0, w0, 0x11111111U, 3);  \
        w0 = ((w0 & 0xFFF00000U) >> 4) | ((w0 & 0x000F0000U) << 12) | \
             ((w0 & 0x000000FFU) << 8) | ((w0 & 0x0000FF00U) >> 8);   \
        w1 = ((w1 & 0xFFF00000U) >> 4) | ((w1 & 0x000F0000U) << 12) | \
             ((w1 & 0x000000FFU) << 8) | ((w1 & 0x0000FF00U) >> 8);   \
        w2 = ((w2 & 0xFFF00000U) >> 4) | ((w2 & 0x000F0000U) << 12) | \
             ((w2 & 0x000000FFU) << 8) | ((w2 & 0x0000FF00U) >> 8);   \
        w3 = ((w3 & 0xFFF00000U) >> 4) | ((w3 & 0x000F0000U) << 12) | \
             ((w3 & 0x000000FFU) << 8) | ((w3 & 0x0000FF00U) >> 8);   \
    } while (0)
#endif

void gift128b_decrypt
    (const gift128b_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t w0, w1, w2, w3;
    uint32_t temp;
    uint8_t round;

    /* Copy the ciphertext into the state buffer and convert from big endian */
    s0 = be_load_word32(input);
    s1 = be_load_word32(input + 4);
    s2 = be_load_word32(input + 8);
    s3 = be_load_word32(input + 12);

    /* Generate the decryption key at the end of the last round */
    gift128b_load_and_forward_schedule();

    /* Perform all 40 rounds */
    for (round = 40; round > 0; --round) {
        /* Rotate the key schedule backwards */
        temp = w0;
        w0 = w1;
        w1 = w2;
        w2 = w3;
        w3 = ((temp & 0x3FFF0000U) << 2) | ((temp & 0xC0000000U) >> 14) |
             ((temp & 0x0000FFF0U) >> 4) | ((temp & 0x0000000FU) << 12);

        /* AddRoundKey - XOR in the key schedule and the round constant */
        s2 ^= w1;
        s1 ^= w3;
        s3 ^= 0x80000000U ^ GIFT128_RC[round - 1];

        /* InvPermBits - apply the inverse of the 128-bit permutation */
        INV_PERM0(s0);
        INV_PERM1(s1);
        INV_PERM2(s2);
        INV_PERM3(s3);

        /* InvSubCells - apply the inverse of the S-box */
        temp = s0;
        s0 = s3;
        s3 = temp;
        s2 ^= s0 & s1;
        s3 ^= 0xFFFFFFFFU;
        s1 ^= s3;
        s3 ^= s2;
        s2 ^= s0 | s1;
        s0 ^= s1 & s3;
        s1 ^= s0 & s2;
    }

    /* Pack the state into the plaintext buffer in big endian */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
}

void gift128t_decrypt
    (const gift128n_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input, uint32_t tweak)
{
    uint32_t s0, s1, s2, s3;
    uint32_t w0, w1, w2, w3;
    uint32_t temp;
    uint8_t round;

    /* Copy the plaintext into the state buffer and convert from nibbles */
    gift128n_to_words(output, input);
    s0 = be_load_word32(output);
    s1 = be_load_word32(output + 4);
    s2 = be_load_word32(output + 8);
    s3 = be_load_word32(output + 12);

    /* Generate the decryption key at the end of the last round */
    gift128b_load_and_forward_schedule();

    /* Perform all 40 rounds */
    for (round = 40; round > 0; --round) {
        /* Rotate the key schedule backwards */
        temp = w0;
        w0 = w1;
        w1 = w2;
        w2 = w3;
        w3 = ((temp & 0x3FFF0000U) << 2) | ((temp & 0xC0000000U) >> 14) |
             ((temp & 0x0000FFF0U) >> 4) | ((temp & 0x0000000FU) << 12);

        /* AddTweak - XOR in the tweak every 5 rounds except the last */
        if ((round % 5) == 0 && round < 40)
            s0 ^= tweak;

        /* AddRoundKey - XOR in the key schedule and the round constant */
        s2 ^= w1;
        s1 ^= w3;
        s3 ^= 0x80000000U ^ GIFT128_RC[round - 1];

        /* InvPermBits - apply the inverse of the 128-bit permutation */
        INV_PERM0(s0);
        INV_PERM1(s1);
        INV_PERM2(s2);
        INV_PERM3(s3);

        /* InvSubCells - apply the inverse of the S-box */
        temp = s0;
        s0 = s3;
        s3 = temp;
        s2 ^= s0 & s1;
        s3 ^= 0xFFFFFFFFU;
        s1 ^= s3;
        s3 ^= s2;
        s2 ^= s0 | s1;
        s0 ^= s1 & s3;
        s1 ^= s0 & s2;
    }

    /* Pack the state into the plaintext buffer in nibble form */
    be_store_word32(output,      s0);
    be_store_word32(output + 4,  s1);
    be_store_word32(output + 8,  s2);
    be_store_word32(output + 12, s3);
    gift128n_to_nibbles(output, output);
}

#endif /* GIFT128_VARIANT_SMALL || GIFT128_VARIANT_TINY */

#endif /* !GIFT128_VARIANT_ASM */