internal-keccak.c 8.5 KB
Newer Older
Rhys Weatherley committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * Copyright (C) 2020 Southern Storm Software, Pty Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "internal-keccak.h"

#if !defined(__AVR__)

/* Faster method to compute ((x + y) % 5) that avoids the division */
static unsigned char const addMod5Table[9] = {
    0, 1, 2, 3, 4, 0, 1, 2, 3
};
#define addMod5(x, y) (addMod5Table[(x) + (y)])

void keccakp_200_permute(keccakp_200_state_t *state)
{
    static uint8_t const RC[18] = {
        0x01, 0x82, 0x8A, 0x00, 0x8B, 0x01, 0x81, 0x09,
        0x8A, 0x88, 0x09, 0x0A, 0x8B, 0x8B, 0x89, 0x03,
        0x02, 0x80
    };
    uint8_t C[5];
    uint8_t D;
    unsigned round;
    unsigned index, index2;
    for (round = 0; round < 18; ++round) {
        /* Step mapping theta.  The specification mentions two temporary
         * arrays of size 5 called C and D.  Compute D on the fly */
        for (index = 0; index < 5; ++index) {
            C[index] = state->A[0][index] ^ state->A[1][index] ^
                       state->A[2][index] ^ state->A[3][index] ^
                       state->A[4][index];
        }
        for (index = 0; index < 5; ++index) {
            D = C[addMod5(index, 4)] ^
                leftRotate1_8(C[addMod5(index, 1)]);
            for (index2 = 0; index2 < 5; ++index2)
                state->A[index2][index] ^= D;
        }

        /* Step mapping rho and pi combined into a single step.
         * Rotate all lanes by a specific offset and rearrange */
        D = state->A[0][1];
        state->A[0][1] = leftRotate4_8(state->A[1][1]);
        state->A[1][1] = leftRotate4_8(state->A[1][4]);
        state->A[1][4] = leftRotate5_8(state->A[4][2]);
        state->A[4][2] = leftRotate7_8(state->A[2][4]);
        state->A[2][4] = leftRotate2_8(state->A[4][0]);
        state->A[4][0] = leftRotate6_8(state->A[0][2]);
        state->A[0][2] = leftRotate3_8(state->A[2][2]);
        state->A[2][2] = leftRotate1_8(state->A[2][3]);
        state->A[2][3] = state->A[3][4];
        state->A[3][4] = state->A[4][3];
        state->A[4][3] = leftRotate1_8(state->A[3][0]);
        state->A[3][0] = leftRotate3_8(state->A[0][4]);
        state->A[0][4] = leftRotate6_8(state->A[4][4]);
        state->A[4][4] = leftRotate2_8(state->A[4][1]);
        state->A[4][1] = leftRotate7_8(state->A[1][3]);
        state->A[1][3] = leftRotate5_8(state->A[3][1]);
        state->A[3][1] = leftRotate4_8(state->A[1][0]);
        state->A[1][0] = leftRotate4_8(state->A[0][3]);
        state->A[0][3] = leftRotate5_8(state->A[3][3]);
        state->A[3][3] = leftRotate7_8(state->A[3][2]);
        state->A[3][2] = leftRotate2_8(state->A[2][1]);
        state->A[2][1] = leftRotate6_8(state->A[1][2]);
        state->A[1][2] = leftRotate3_8(state->A[2][0]);
        state->A[2][0] = leftRotate1_8(D);

        /* Step mapping chi.  Combine each lane with two others in its row */
        for (index = 0; index < 5; ++index) {
            C[0] = state->A[index][0];
            C[1] = state->A[index][1];
            C[2] = state->A[index][2];
            C[3] = state->A[index][3];
            C[4] = state->A[index][4];
            for (index2 = 0; index2 < 5; ++index2) {
                state->A[index][index2] =
                    C[index2] ^
                    ((~C[addMod5(index2, 1)]) & C[addMod5(index2, 2)]);
            }
        }

        /* Step mapping iota.  XOR A[0][0] with the round constant */
        state->A[0][0] ^= RC[round];
    }
}

#if defined(LW_UTIL_LITTLE_ENDIAN)
#define keccakp_400_permute_host keccakp_400_permute
#endif

/* Keccak-p[400] that assumes that the input is already in host byte order */
void keccakp_400_permute_host(keccakp_400_state_t *state, unsigned rounds)
{
    static uint16_t const RC[20] = {
        0x0001, 0x8082, 0x808A, 0x8000, 0x808B, 0x0001, 0x8081, 0x8009,
        0x008A, 0x0088, 0x8009, 0x000A, 0x808B, 0x008B, 0x8089, 0x8003,
        0x8002, 0x0080, 0x800A, 0x000A
    };
    uint16_t C[5];
    uint16_t D;
    unsigned round;
    unsigned index, index2;
    for (round = 20 - rounds; round < 20; ++round) {
        /* Step mapping theta.  The specification mentions two temporary
         * arrays of size 5 called C and D.  Compute D on the fly */
        for (index = 0; index < 5; ++index) {
            C[index] = state->A[0][index] ^ state->A[1][index] ^
                       state->A[2][index] ^ state->A[3][index] ^
                       state->A[4][index];
        }
        for (index = 0; index < 5; ++index) {
            D = C[addMod5(index, 4)] ^
                leftRotate1_16(C[addMod5(index, 1)]);
            for (index2 = 0; index2 < 5; ++index2)
                state->A[index2][index] ^= D;
        }

        /* Step mapping rho and pi combined into a single step.
         * Rotate all lanes by a specific offset and rearrange */
        D = state->A[0][1];
        state->A[0][1] = leftRotate12_16(state->A[1][1]);
        state->A[1][1] = leftRotate4_16 (state->A[1][4]);
        state->A[1][4] = leftRotate13_16(state->A[4][2]);
        state->A[4][2] = leftRotate7_16 (state->A[2][4]);
        state->A[2][4] = leftRotate2_16 (state->A[4][0]);
        state->A[4][0] = leftRotate14_16(state->A[0][2]);
        state->A[0][2] = leftRotate11_16(state->A[2][2]);
        state->A[2][2] = leftRotate9_16 (state->A[2][3]);
        state->A[2][3] = leftRotate8_16 (state->A[3][4]);
        state->A[3][4] = leftRotate8_16 (state->A[4][3]);
        state->A[4][3] = leftRotate9_16 (state->A[3][0]);
        state->A[3][0] = leftRotate11_16(state->A[0][4]);
        state->A[0][4] = leftRotate14_16(state->A[4][4]);
        state->A[4][4] = leftRotate2_16 (state->A[4][1]);
        state->A[4][1] = leftRotate7_16 (state->A[1][3]);
        state->A[1][3] = leftRotate13_16(state->A[3][1]);
        state->A[3][1] = leftRotate4_16 (state->A[1][0]);
        state->A[1][0] = leftRotate12_16(state->A[0][3]);
        state->A[0][3] = leftRotate5_16 (state->A[3][3]);
        state->A[3][3] = leftRotate15_16(state->A[3][2]);
        state->A[3][2] = leftRotate10_16(state->A[2][1]);
        state->A[2][1] = leftRotate6_16 (state->A[1][2]);
        state->A[1][2] = leftRotate3_16 (state->A[2][0]);
        state->A[2][0] = leftRotate1_16(D);

        /* Step mapping chi.  Combine each lane with two others in its row */
        for (index = 0; index < 5; ++index) {
            C[0] = state->A[index][0];
            C[1] = state->A[index][1];
            C[2] = state->A[index][2];
            C[3] = state->A[index][3];
            C[4] = state->A[index][4];
            for (index2 = 0; index2 < 5; ++index2) {
                state->A[index][index2] =
                    C[index2] ^
                    ((~C[addMod5(index2, 1)]) & C[addMod5(index2, 2)]);
            }
        }

        /* Step mapping iota.  XOR A[0][0] with the round constant */
        state->A[0][0] ^= RC[round];
    }
}

#if !defined(LW_UTIL_LITTLE_ENDIAN)

/**
 * \brief Reverses the bytes in a Keccak-p[400] state.
 *
 * \param state The Keccak-p[400] state to apply byte-reversal to.
 */
static void keccakp_400_reverse_bytes(keccakp_400_state_t *state)
{
    unsigned index;
    unsigned char temp1;
    unsigned char temp2;
    for (index = 0; index < 50; index += 2) {
        temp1 = state->B[index];
        temp2 = state->B[index + 1];
        state->B[index] = temp2;
        state->B[index + 1] = temp1;
    }
}

/* Keccak-p[400] that requires byte reversal on input and output */
void keccakp_400_permute(keccakp_400_state_t *state, unsigned rounds)
{
    keccakp_400_reverse_bytes(state);
    keccakp_400_permute_host(state, rounds);
    keccakp_400_reverse_bytes(state);
}

#endif

#endif /* !__AVR__ */