internal-ocb.h 12.3 KB
Newer Older
Rhys Weatherley committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * Copyright (C) 2020 Southern Storm Software, Pty Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#ifndef LW_INTERNAL_OCB_H
#define LW_INTERNAL_OCB_H

#include "internal-util.h"
#include <string.h>

/* We expect a number of macros to be defined before this file
 * is included to configure the underlying block cipher:
 *
 * OCB_ALG_NAME         Name of the algorithm that is using OCB mode.
 * OCB_BLOCK_SIZE       Size of the block for the underlying cipher in bytes.
 * OCB_NONCE_SIZE       Size of the nonce which must be < OCB_BLOCK_SIZE.
 * OCB_TAG_SIZE         Size of the authentication tag.
 * OCB_KEY_SCHEDULE     Type for the key schedule.
 * OCB_SETUP_KEY        Name of the key schedule setup function.
 * OCB_ENCRYPT_BLOCK    Name of the block cipher ECB encrypt function.
 * OCB_DECRYPT_BLOCK    Name of the block cipher ECB decrypt function.
 * OCB_DOUBLE_L         Name of the function to double L (optional).
 */
#if defined(OCB_ENCRYPT_BLOCK)

/**
 * \file internal-ocb.h
 * \brief Internal implementation of the OCB block cipher mode.
 *
 * Note that OCB is covered by patents so it may not be usable in all
 * applications.  Open source applications should be covered, but for
 * others you will need to contact the patent authors to find out
 * if you can use it or if a paid license is required.
 *
 * License information: https://web.cs.ucdavis.edu/~rogaway/ocb/license.htm
 *
 * References: https://tools.ietf.org/html/rfc7253
 */

#define OCB_CONCAT_INNER(name,suffix) name##suffix
#define OCB_CONCAT(name,suffix) OCB_CONCAT_INNER(name,suffix)

#if !defined(OCB_DOUBLE_L)

#define OCB_DOUBLE_L OCB_CONCAT(OCB_ALG_NAME,_double_l)

65 66 67
#if OCB_BLOCK_SIZE == 16

/* Double a value in GF(128) */
Rhys Weatherley committed
68 69 70 71 72 73 74 75 76
static void OCB_DOUBLE_L(unsigned char out[16], const unsigned char in[16])
{
    unsigned index;
    unsigned char mask = (unsigned char)(((signed char)in[0]) >> 7);
    for (index = 0; index < 15; ++index)
        out[index] = (in[index] << 1) | (in[index + 1] >> 7);
    out[15] = (in[15] << 1) ^ (mask & 0x87);
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#elif OCB_BLOCK_SIZE == 12

/* Double a value in GF(96) */
static void OCB_DOUBLE_L
    (unsigned char out[12], const unsigned char in[12])
{
    unsigned index;
    unsigned char mask = (unsigned char)(((signed char)in[0]) >> 7);
    for (index = 0; index < 11; ++index)
        out[index] = (in[index] << 1) | (in[index + 1] >> 7);
    out[11] = (in[11] << 1) ^ (mask & 0x41);
    out[10] ^= (mask & 0x06);
}

#else
#error "Unknown block size for OCB"
#endif

Rhys Weatherley committed
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
#endif

/* State information for OCB functions */
#define OCB_STATE OCB_CONCAT(OCB_ALG_NAME,_state_t)
typedef struct
{
    OCB_KEY_SCHEDULE ks;
    unsigned char Lstar[OCB_BLOCK_SIZE];
    unsigned char Ldollar[OCB_BLOCK_SIZE];
    unsigned char L0[OCB_BLOCK_SIZE];
    unsigned char L1[OCB_BLOCK_SIZE];

} OCB_STATE;

/* Initializes the OCB state from the key and nonce */
static void OCB_CONCAT(OCB_ALG_NAME,_init)
    (OCB_STATE *state, const unsigned char *k, const unsigned char *nonce,
     unsigned char offset[OCB_BLOCK_SIZE])
{
    unsigned bottom;

    /* Set up the key schedule */
    OCB_SETUP_KEY(&(state->ks), k);

    /* Derive the values of L*, L$, L0, and L1 */
    memset(state->Lstar, 0, sizeof(state->Lstar));
    OCB_ENCRYPT_BLOCK(&(state->ks), state->Lstar, state->Lstar);
    OCB_DOUBLE_L(state->Ldollar, state->Lstar);
    OCB_DOUBLE_L(state->L0, state->Ldollar);
    OCB_DOUBLE_L(state->L1, state->L0);

    /* Derive the initial offset from the nonce */
    memset(offset, 0, OCB_BLOCK_SIZE);
    memcpy(offset + OCB_BLOCK_SIZE - OCB_NONCE_SIZE, nonce, OCB_NONCE_SIZE);
    offset[0] = ((OCB_TAG_SIZE * 8) & 0x7F) << 1;
    offset[OCB_BLOCK_SIZE - OCB_NONCE_SIZE - 1] |= 0x01;
    bottom = offset[OCB_BLOCK_SIZE - 1] & 0x3F;
    offset[OCB_BLOCK_SIZE - 1] &= 0xC0;
    {
        unsigned index;
        unsigned byte_posn = bottom / 8;
#if OCB_BLOCK_SIZE == 16
        /* Standard OCB with a 128-bit block */
        unsigned char stretch[24];
        OCB_ENCRYPT_BLOCK(&(state->ks), stretch, offset);
        memcpy(stretch + 16, stretch + 1, 8);
        lw_xor_block(stretch + 16, stretch, 8);
#elif OCB_BLOCK_SIZE == 12
        /* 96-bit block handling from the Pyjamask specification */
        unsigned char stretch[20];
        OCB_ENCRYPT_BLOCK(&(state->ks), stretch, offset);
        for (index = 0; index < 8; ++index) {
            stretch[index + 12] =
                (stretch[index + 1] << 1) | (stretch[index + 2] >> 7);
        }
        lw_xor_block(stretch + 12, stretch, 8);
#else
        unsigned char stretch[OCB_BLOCK_SIZE + 8] = {0};
        #error "unsupported block size for OCB mode"
#endif
        bottom %= 8;
        if (bottom != 0) {
            for (index = 0; index < OCB_BLOCK_SIZE; ++index) {
                offset[index] =
                    (stretch[index + byte_posn] << bottom) |
                    (stretch[index + byte_posn + 1] >> (8 - bottom));
            }
        } else {
            memcpy(offset, stretch + byte_posn, OCB_BLOCK_SIZE);
        }
    }
}

/* Calculate L_{ntz(i)} when the last two bits of i are zero */
static void OCB_CONCAT(OCB_ALG_NAME,_calculate_L)
    (OCB_STATE *state, unsigned char L[OCB_BLOCK_SIZE], unsigned long long i)
{
    OCB_DOUBLE_L(L, state->L1);
    i >>= 2;
    while ((i & 1) == 0) {
        OCB_DOUBLE_L(L, L);
        i >>= 1;
    }
}

/* Process associated data with OCB */
static void OCB_CONCAT(OCB_ALG_NAME,_process_ad)
    (OCB_STATE *state, unsigned char tag[OCB_BLOCK_SIZE],
     const unsigned char *ad, unsigned long long adlen)
{
    unsigned char offset[OCB_BLOCK_SIZE];
    unsigned char block[OCB_BLOCK_SIZE];
    unsigned long long block_number;

    /* Process all full blocks */
    memset(offset, 0, sizeof(offset));
    block_number = 1;
    while (adlen >= OCB_BLOCK_SIZE) {
        if (block_number & 1) {
            lw_xor_block(offset, state->L0, OCB_BLOCK_SIZE);
        } else if ((block_number & 3) == 2) {
            lw_xor_block(offset, state->L1, OCB_BLOCK_SIZE);
        } else {
            OCB_CONCAT(OCB_ALG_NAME,_calculate_L)(state, block, block_number);
            lw_xor_block(offset, block, OCB_BLOCK_SIZE);
        }
        lw_xor_block_2_src(block, offset, ad, OCB_BLOCK_SIZE);
        OCB_ENCRYPT_BLOCK(&(state->ks), block, block);
        lw_xor_block(tag, block, OCB_BLOCK_SIZE);
        ad += OCB_BLOCK_SIZE;
        adlen -= OCB_BLOCK_SIZE;
        ++block_number;
    }

    /* Pad and process the last partial block */
    if (adlen > 0) {
        unsigned temp = (unsigned)adlen;
        lw_xor_block(offset, state->Lstar, OCB_BLOCK_SIZE);
        lw_xor_block(offset, ad, temp);
        offset[temp] ^= 0x80;
        OCB_ENCRYPT_BLOCK(&(state->ks), block, offset);
        lw_xor_block(tag, block, OCB_BLOCK_SIZE);
    }
}

int OCB_CONCAT(OCB_ALG_NAME,_aead_encrypt)
    (unsigned char *c, unsigned long long *clen,
     const unsigned char *m, unsigned long long mlen,
     const unsigned char *ad, unsigned long long adlen,
     const unsigned char *nsec,
     const unsigned char *npub,
     const unsigned char *k)
{
    OCB_STATE state;
    unsigned char offset[OCB_BLOCK_SIZE];
    unsigned char sum[OCB_BLOCK_SIZE];
    unsigned char block[OCB_BLOCK_SIZE];
    unsigned long long block_number;
    (void)nsec;

    /* Set the length of the returned ciphertext */
    *clen = mlen + OCB_TAG_SIZE;

    /* Initialize the OCB state */
    OCB_CONCAT(OCB_ALG_NAME,_init)(&state, k, npub, offset);

    /* Process all plaintext blocks except the last */
    memset(sum, 0, sizeof(sum));
    block_number = 1;
    while (mlen >= OCB_BLOCK_SIZE) {
        if (block_number & 1) {
            lw_xor_block(offset, state.L0, OCB_BLOCK_SIZE);
        } else if ((block_number & 3) == 2) {
            lw_xor_block(offset, state.L1, OCB_BLOCK_SIZE);
        } else {
            OCB_CONCAT(OCB_ALG_NAME,_calculate_L)(&state, block, block_number);
            lw_xor_block(offset, block, OCB_BLOCK_SIZE);
        }
        lw_xor_block(sum, m, OCB_BLOCK_SIZE);
        lw_xor_block_2_src(block, offset, m, OCB_BLOCK_SIZE);
        OCB_ENCRYPT_BLOCK(&(state.ks), block, block);
        lw_xor_block_2_src(c, block, offset, OCB_BLOCK_SIZE);
        c += OCB_BLOCK_SIZE;
        m += OCB_BLOCK_SIZE;
        mlen -= OCB_BLOCK_SIZE;
        ++block_number;
    }

    /* Pad and process the last plaintext block */
    if (mlen > 0) {
        unsigned temp = (unsigned)mlen;
        lw_xor_block(sum, m, temp);
        sum[temp] ^= 0x80;
        lw_xor_block(offset, state.Lstar, OCB_BLOCK_SIZE);
        OCB_ENCRYPT_BLOCK(&(state.ks), block, offset);
        lw_xor_block_2_src(c, block, m, temp);
        c += temp;
    }

    /* Finalize the encryption phase */
    lw_xor_block(sum, offset, OCB_BLOCK_SIZE);
    lw_xor_block(sum, state.Ldollar, OCB_BLOCK_SIZE);
    OCB_ENCRYPT_BLOCK(&(state.ks), sum, sum);

    /* Process the associated data and compute the final authentication tag */
    OCB_CONCAT(OCB_ALG_NAME,_process_ad)(&state, sum, ad, adlen);
    memcpy(c, sum, OCB_TAG_SIZE);
    return 0;
}

int OCB_CONCAT(OCB_ALG_NAME,_aead_decrypt)
    (unsigned char *m, unsigned long long *mlen,
     unsigned char *nsec,
     const unsigned char *c, unsigned long long clen,
     const unsigned char *ad, unsigned long long adlen,
     const unsigned char *npub,
     const unsigned char *k)
{
    OCB_STATE state;
    unsigned char *mtemp = m;
    unsigned char offset[OCB_BLOCK_SIZE];
    unsigned char sum[OCB_BLOCK_SIZE];
    unsigned char block[OCB_BLOCK_SIZE];
    unsigned long long block_number;
    (void)nsec;

    /* Validate the ciphertext length and set the return "mlen" value */
    if (clen < OCB_TAG_SIZE)
        return -1;
    *mlen = clen - OCB_TAG_SIZE;

    /* Initialize the OCB state */
    OCB_CONCAT(OCB_ALG_NAME,_init)(&state, k, npub, offset);

    /* Process all ciphertext blocks except the last */
    memset(sum, 0, sizeof(sum));
    block_number = 1;
    clen -= OCB_TAG_SIZE;
    while (clen >= OCB_BLOCK_SIZE) {
        if (block_number & 1) {
            lw_xor_block(offset, state.L0, OCB_BLOCK_SIZE);
        } else if ((block_number & 3) == 2) {
            lw_xor_block(offset, state.L1, OCB_BLOCK_SIZE);
        } else {
            OCB_CONCAT(OCB_ALG_NAME,_calculate_L)(&state, block, block_number);
            lw_xor_block(offset, block, OCB_BLOCK_SIZE);
        }
        lw_xor_block_2_src(block, offset, c, OCB_BLOCK_SIZE);
        OCB_DECRYPT_BLOCK(&(state.ks), block, block);
        lw_xor_block_2_src(m, block, offset, OCB_BLOCK_SIZE);
        lw_xor_block(sum, m, OCB_BLOCK_SIZE);
        c += OCB_BLOCK_SIZE;
        m += OCB_BLOCK_SIZE;
        clen -= OCB_BLOCK_SIZE;
        ++block_number;
    }

    /* Pad and process the last ciphertext block */
    if (clen > 0) {
        unsigned temp = (unsigned)clen;
        lw_xor_block(offset, state.Lstar, OCB_BLOCK_SIZE);
        OCB_ENCRYPT_BLOCK(&(state.ks), block, offset);
        lw_xor_block_2_src(m, block, c, temp);
        lw_xor_block(sum, m, temp);
        sum[temp] ^= 0x80;
        c += temp;
    }

    /* Finalize the decryption phase */
    lw_xor_block(sum, offset, OCB_BLOCK_SIZE);
    lw_xor_block(sum, state.Ldollar, OCB_BLOCK_SIZE);
    OCB_ENCRYPT_BLOCK(&(state.ks), sum, sum);

    /* Process the associated data and check the final authentication tag */
    OCB_CONCAT(OCB_ALG_NAME,_process_ad)(&state, sum, ad, adlen);
    return aead_check_tag(mtemp, *mlen, sum, c, OCB_TAG_SIZE);
}

#endif /* OCB_ENCRYPT_BLOCK */

#endif /* LW_INTERNAL_OCB_H */