sparkle_avr.S 18.6 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
///////////////////////////////////////////////////////////////////////////////
// sparkle_avr.S: AVR Assembler implementation of the SPARKLE permutation.   //
// This file is part of the SPARKLE submission to NIST's LW Crypto Project.  //
// Version 1.0.0 (2019-03-29), see <http://www.cryptolux.org/> for updates.  //
// Authors: The SPARKLE Group (C. Beierle, A. Biryukov, L. Cardoso dos       //
// Santos, J. Groszschaedl, L. Perrin, A. Udovenko, V. Velichkov, Q. Wang).  //
// License: GPLv3 (see LICENSE file), other licenses available upon request. //
// Copyright (C) 2019 University of Luxembourg <http://www.uni.lu/>.         //
// ------------------------------------------------------------------------- //
// This program is free software: you can redistribute it and/or modify it   //
// under the terms of the GNU General Public License as published by the     //
// Free Software Foundation, either version 3 of the License, or (at your    //
// option) any later version. This program is distributed in the hope that   //
// it will be useful, but WITHOUT ANY WARRANTY; without even the implied     //
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  //
// GNU General Public License for more details. You should have received a   //
// copy of the GNU General Public License along with this program. If not,   //
// see <http://www.gnu.org/licenses/>.                                       //
///////////////////////////////////////////////////////////////////////////////


#include "avr/io.h"


// 32-bit word registers
#define WR0 R0,R1,R2,R3
#define WR1 R4,R5,R6,R7
#define WR2 R8,R9,R10,R11
#define WR3 R12,R13,R14,R15
#define WR4 R16,R17,R18,R19
#define WR5 R20,R21,R22,R23

// Temporary registers
#define t0 R16
#define t1 R17
#define t2 R18
#define t3 R19

// Other register names
#define ZERO R20
#define NS R22
#define SCNT R23
#define NB R24
#define BCNT R25

// 32-bit offset values
#define OF0 0,1,2,3,
#define OF1 4,5,6,7
#define OF2 8,9,10,11
#define OF3 12,13,14,15


// Program flash data section (in code memory space)
.section .text


///////////////////////////////////////////////////////////////////////////////
/////////////////////// ROUND CONSTANTS (IN BIG ENDIAN) ///////////////////////
///////////////////////////////////////////////////////////////////////////////

// .global RCON
.type RCON, @object

RCON:
.word 0x5162, 0xB7E1, 0x5880, 0xBF71
.word 0xDA56, 0x38B4, 0x7738, 0x324E
.word 0x85EB, 0xBB11, 0x7B57, 0x4F7C
.word 0xA1C8, 0xCFBF, 0x293D, 0xC2B3


///////////////////////////////////////////////////////////////////////////////
///////////// MACROS FOR 32-BIT ARITHMETIC AND LOGICAL OPERATIONS /////////////
///////////////////////////////////////////////////////////////////////////////

// Addition of two 32-bit words: A = A + B
.macro ADDWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    ADD  \a0, \b0
    ADC  \a1, \b1
    ADC  \a2, \b2
    ADC  \a3, \b3
.endm

// Bitwise AND of two 32-bit words: A = A AND B
.macro ANDWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    AND  \a0, \b0
    AND  \a1, \b1
    AND  \a2, \b2
    AND  \a3, \b3
.endm

// Bitwise XOR of two 32-bit words: A = A XOR B
.macro XORWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    EOR  \a0, \b0
    EOR  \a1, \b1
    EOR  \a2, \b2
    EOR  \a3, \b3
.endm

// Moving 32-bit word B to 32-bit word A: A = B
.macro MOVWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    MOVW \a0, \b0
    MOVW \a2, \b2
.endm

// ELL-Operation of a 32-bit word: A = ELL(B)
.macro ELLWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    MOVW t0, \b2
    MOVW \a2, \b0
    MOVW \a0, t0
    EOR  \a0, \a2
    EOR  \a1, \a3
.endm


///////////////////////////////////////////////////////////////////////////////
////////// MACROS FOR LOADING/STORING STATE WORDS AND ROUND CONSTANTS /////////
///////////////////////////////////////////////////////////////////////////////

// Load 32-bit word via X-pointer from RAM using post-increment addressing mode
.macro LDXINCR a0:req, a1:req, a2:req, a3:req
    LD   \a0, X+
    LD   \a1, X+
    LD   \a2, X+
    LD   \a3, X+
.endm

// Load 32-bit word via Z-pointer from RAM using displacement addressing mode
.macro LDZDISP a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    LDD  \a0, Z+\b0
    LDD  \a1, Z+\b1
    LDD  \a2, Z+\b2
    LDD  \a3, Z+\b3
.endm

// Load 32-bit word via Z-pointer from RAM using post-increment addressing mode
.macro LDZINCR a0:req, a1:req, a2:req, a3:req
    LD   \a0, Z+
    LD   \a1, Z+
    LD   \a2, Z+
    LD   \a3, Z+
.endm

// Load 32-bit word from program memory using post-increment addressing mode
.macro LDZPCMI a0:req, a1:req, a2:req, a3:req
    LPM  \a0, Z+
    LPM  \a1, Z+
    LPM  \a2, Z+
    LPM  \a3, Z+
.endm

// Store 32-bit word via X-pointer to RAM using pre-decrement addressing mode
.macro STXDECR a0:req, a1:req, a2:req, a3:req
    ST   -X, \a3
    ST   -X, \a2
    ST   -X, \a1
    ST   -X, \a0
.endm

// Store 32-bit word via X-pointer to RAM using post-increment addressing mode
.macro STXINCR a0:req, a1:req, a2:req, a3:req
    ST   X+, \a0
    ST   X+, \a1
    ST   X+, \a2
    ST   X+, \a3
.endm

// Store 32-bit word via Z-pointer to RAM using pre-decrement addressing mode
.macro STZDECR a0:req, a1:req, a2:req, a3:req
    ST   -Z, \a3
    ST   -Z, \a2
    ST   -Z, \a1
    ST   -Z, \a0
.endm

// Store 32-bit word via Z-pointer to RAM using displacement addressing mode
.macro STZDISP a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    STD  Z+\b0, \a0
    STD  Z+\b1, \a1
    STD  Z+\b2, \a2
    STD  Z+\b3, \a3
.endm

// Store 32-bit word via Z-pointer to RAM using post-increment addressing mode
.macro STZINCR a0:req, a1:req, a2:req, a3:req
    ST   Z+, \a0
    ST   Z+, \a1
    ST   Z+, \a2
    ST   Z+, \a3
.endm


///////////////////////////////////////////////////////////////////////////////
////// MACROS FOR RIGHT-ROTATION OF A 32-BIT WORD FOLLOWED BY ADD OR XOR //////
///////////////////////////////////////////////////////////////////////////////

// A = A + (B >>> 31)
.macro RR31ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Move word B to temporary word T
    MOVW t0, \b0
    MOVW t2, \b2
    // Rotate word T one bit to the left
    ADD  t0, t0 
    ADC  t1, t1
    ADC  t2, t2
    ADC  t3, t3
    ADC  t0, ZERO
    // Add word T to word A
    ADD  \a0, t0
    ADC  \a1, t1
    ADC  \a2, t2
    ADC  \a3, t3
.endm

// A = A XOR (B >>> 31)
.macro RR31XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Move word B to temporary word T
    MOVW t0, \b0
    MOVW t2, \b2
    // Rotate word T one bit to the left
    ADD  t0, t0 
    ADC  t1, t1
    ADC  t2, t2
    ADC  t3, t3
    ADC  t0, ZERO
    // XOR word T to word A
    EOR  \a0, t0
    EOR  \a1, t1
    EOR  \a2, t2
    EOR  \a3, t3
.endm

// A = A + (B >>> 24)
.macro RR24ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Add word B with implicit 24-bit right-rotation to word A
    ADD  \a0, \b3
    ADC  \a1, \b0
    ADC  \a2, \b1
    ADC  \a3, \b2
.endm

// A = A XOR (B >>> 24)
.macro RR24XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // XOR word B with implicit 24-bit right-rotation to word A
    EOR  \a0, \b3
    EOR  \a1, \b0
    EOR  \a2, \b1
    EOR  \a3, \b2
.endm

// A = A + (B >>> 17)
.macro RR17ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Move word B to temporary word T
    MOVW t0, \b0
    MOVW t2, \b2
    // Rotate word T one bit to the right
    BST  t0, 0
    ROR  t3
    ROR  t2
    ROR  t1
    ROR  t0
    BLD  t3, 7
    // Add word T with implicit 16-bit right-rotation to word A
    ADD  \a0, t2
    ADC  \a1, t3
    ADC  \a2, t0
    ADC  \a3, t1
.endm

// A = A XOR (B >>> 17)
.macro RR17XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Move word B to temporary word T
    MOVW t0, \b0
    MOVW t2, \b2
    // Rotate word T one bit to the right
    BST  t0, 0
    ROR  t3
    ROR  t2
    ROR  t1
    ROR  t0
    BLD  t3, 7
    // XOR word T with implicit 16-bit right-rotation to word A
    EOR  \a0, t2
    EOR  \a1, t3
    EOR  \a2, t0
    EOR  \a3, t1
.endm

// A = A + (B >>> 16)
.macro RR16ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Add word B with implicit 16-bit right-rotation to word A
    ADD  \a0, \b2
    ADC  \a1, \b3
    ADC  \a2, \b0
    ADC  \a3, \b1
.endm

// A = A XOR (B >>> 16)
.macro RR16XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // XOR word B with implicit 16-bit right-rotation to word A
    EOR  \a0, \b2
    EOR  \a1, \b3
    EOR  \a2, \b0
    EOR  \a3, \b1
.endm

// A = A + (B >>> 15)
.macro RR15ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Move word B to temporary word T
    MOVW t0, \b0
    MOVW t2, \b2
    // Rotate word T one bit to the left
    ADD  t0, t0 
    ADC  t1, t1
    ADC  t2, t2
    ADC  t3, t3
    ADC  t0, ZERO
    // Add word T with implicit 16-bit right-rotation to word A
    ADD  \a0, t2
    ADC  \a1, t3
    ADC  \a2, t0
    ADC  \a3, t1
.endm

// A = A XOR (B >>> 15)
.macro RR15XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Move word B to temporary word T
    MOVW t0, \b0
    MOVW t2, \b2
    // Rotate word T one bit to the left
    ADD  t0, t0 
    ADC  t1, t1
    ADC  t2, t2
    ADC  t3, t3
    ADC  t0, ZERO
    // XOR word T with implicit 16-bit right-rotation to word A
    EOR  \a0, t2
    EOR  \a1, t3
    EOR  \a2, t0
    EOR  \a3, t1
.endm

// A = A + (B >>> 8)
.macro RR08ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Add word B with implicit 8-bit right-rotation to word A
    ADD  \a0, \b1
    ADC  \a1, \b2
    ADC  \a2, \b3
    ADC  \a3, \b0
.endm

// A = A XOR (B >>> 8)
.macro RR08XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // XOR word B with implicit 8-bit right-rotation to word A
    EOR  \a0, \b1
    EOR  \a1, \b2
    EOR  \a2, \b3
    EOR  \a3, \b0
.endm

// A = A + (B >> 16)
.macro RS16ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
    // Add word B with implicit 16-bit right-shift to word A
    ADD  \a0, \b2
    ADC  \a1, \b3
    ADC  \a2, ZERO
    ADC  \a3, ZERO
.endm


///////////////////////////////////////////////////////////////////////////////
//////////////////// PROLOGUE: PUSH CALLEE-SAVED REGISTERS ////////////////////
///////////////////////////////////////////////////////////////////////////////

// Push callee-saved registers on the stack
.macro PROLOGUE
    PUSH R0
    PUSH R2
    PUSH R3
    PUSH R4
    PUSH R5
    PUSH R6
    PUSH R7
    PUSH R8
    PUSH R9
    PUSH R10
    PUSH R11
    PUSH R12
    PUSH R13
    PUSH R14
    PUSH R15
    PUSH R16
    PUSH R17
    // initialize pointers and loop-counters
    MOVW XL, R24
    MOV  NB, R22
    MOV  NS, R20
    ADD  NB, NB
    ADD  NB, NB
    CLR  ZERO
.endm


///////////////////////////////////////////////////////////////////////////////
///////////////////// EPILOGUE: POP CALLEE-SAVED REGISTERS ////////////////////
///////////////////////////////////////////////////////////////////////////////

// Pop callee-saved registers from the stack
.macro EPILOGUE
    POP  R17
    POP  R16
    POP  R15
    POP  R14
    POP  R13
    POP  R12
    POP  R11
    POP  R10
    POP  R9
    POP  R8
    POP  R7
    POP  R6
    POP  R5
    POP  R4
    POP  R3
    POP  R2
    POP  R0
    CLR  R1
.endm


///////////////////////////////////////////////////////////////////////////////
////////////////////// ADDITION OF STEP COUNTER TO STATE //////////////////////
///////////////////////////////////////////////////////////////////////////////

.macro ADD_STEP_CNT
    LDI     ZL, lo8(RCON)
    LDI     ZH, hi8(RCON)
    MOV     t0, SCNT
    ANDI    t0, 7
    ADD     t0, t0
    ADD     t0, t0
    ADD     ZL, t0
    ADC     ZH, ZERO
    LDZPCMI WR0
    ADIW    XL, 4
    LDXINCR WR1
    XORWORD WR1, WR0
    STXDECR WR1
    SBIW    ZL, 4
    SUB     ZL, t0
    SBC     ZH, ZERO
    ADIW    XL, 8
    LD      t0, X
    EOR     t0, SCNT
    ST      X, t0
    SBIW    XL, 12
.endm


///////////////////////////////////////////////////////////////////////////////
//////////////////////////////// ARXBOX LAYER /////////////////////////////////
///////////////////////////////////////////////////////////////////////////////

.macro ARXBOX_LAYER
    MOV     BCNT, NB       ; set branch-counter to NB
ARXLOOP1:
    LDXINCR WR0            ; load state-word X
    LDXINCR WR1            ; load state-word Y
    LDZPCMI WR2            ; load round constant C
    RR31ADD WR0, WR1       ; X = X + (Y >>> 31)
    RR24XOR WR1, WR0       ; Y = Y XOR (X >>> 24)
    XORWORD WR0, WR2       ; X = X XOR C
    RR17ADD WR0, WR1       ; X = X + (Y >>> 17)
    RR17XOR WR1, WR0       ; Y = Y XOR (X >>> 17)
    XORWORD WR0, WR2       ; X = X XOR C
    ADDWORD WR0, WR1       ; X = X + (Y >>> 0)
    RR31XOR WR1, WR0       ; Y = Y XOR (X >>> 31)
    XORWORD WR0, WR2       ; X = X XOR C
    RR24ADD WR0, WR1       ; X = X + (Y >>> 24)
    RR16XOR WR1, WR0       ; Y = Y XOR (X >>> 16)
    XORWORD WR0, WR2       ; X = X XOR C
    SBIW    XL,  8         ; decrement X-pointer by 8
    STXINCR WR0,           ; store state-word X
    STXINCR WR1,           ; store state-word Y
    SUBI    BCNT, 4        ; decrement branch-counter by 4
    CPSE    BCNT, ZERO     ; test whether branch-counter is 0
    RJMP    ARXLOOP1       ; if not then jump back to start
    SUB     XL,  NB        ; set X-pointer to address of state[nb]
    SBC     XH,  ZERO      ; propagate carry
    SUB     XL,  NB        ; set X-pointer to address of state[0]
    SBC     XH,  ZERO      ; propagate carry
.endm


///////////////////////////////////////////////////////////////////////////////
//////////////////////////////// LINEAR LAYER /////////////////////////////////
///////////////////////////////////////////////////////////////////////////////

.macro LINEAR_LAYER
    PUSH    NS             ; push NS to get one more register
    PUSH    SCNT           ; push SCNT to get one more register
    MOVW    ZL, XL         ; set Z-pointer to address of state[0]
    LDXINCR WR0            ; WR0 = X[0] (WR0 contains tmpx)
    MOVWORD WR1, WR0       ; WR1 = X[0] (WR1 contains x0)
    LDXINCR WR2            ; WR2 = Y[0] (WR2 contains tmpy)
    MOVWORD WR3, WR2       ; WR3 = Y[0] (WR3 contains y0)
    MOV     BCNT, NB       ; set branch-counter to NB
    SUBI    BCNT, 8        ; first iteration of loop below is peeled off
LINLOOP1:
    LDXINCR WR4            ; load state-word X[i]
    XORWORD WR0, WR4       ; xor X[i] to tmpx
    LDXINCR WR4            ; load state-word Y[i]
    XORWORD WR2, WR4       ; xor Y[i] to tmpy
    SUBI    BCNT, 8        ; decrement branch-counter
    BRNE    LINLOOP1       ; jump back to start if branch-counter is not 0
    ELLWORD WR0, WR0       ; perform ELL operation on tmpx
    ELLWORD WR2, WR2       ; perform ELL operation on tmpy
    ADIW    XL, 8          ; X-pointer contains now address of state[j+nb]
    MOV     BCNT, NB       ; set branch-counter to NB
    SUBI    BCNT, 8        ; last iteration of loop below is peeled off
LINLOOP2:
    LDXINCR WR4            ; WR4 = state[j+nb]
    XORWORD WR4, WR2       ; WR4 = state[j+nb] ^ tmpy
    LDZDISP WR5, OF2       ; WR5 = state[j]
    XORWORD WR4, WR5       ; WR4 = state[j+nb] ^ tmpy ^ state[j]
    STXDECR WR5            ; state[j+nb] = WR5
    STZINCR WR4            ; state[j-2] = WR4
    ADIW    XL, 4          ; increment X-pointer manually
    LDXINCR WR4            ; WR4 = state[j+nb+1]
    XORWORD WR4, WR0       ; WR4 = state[j+nb+1] ^ tmpx
    LDZDISP WR5, OF2       ; WR5 = state[j+1]
    XORWORD WR4, WR5       ; WR4 = state[j+nb+1] ^ tmpx ^ state[j+1]
    STXDECR WR5            ; state[j+nb+1] = WR5
    STZINCR WR4            ; state[j-1] = WR4
    ADIW    XL, 4          ; increment X-pointer manually
    SUBI    BCNT, 8        ; decrement branch-counter
    BRNE    LINLOOP2       ; jump back to start if branch-counter is not 0
    MOVW    XL, ZL         ; X-pointer contains address of state[nb-1]
    ADIW    XL, 8          ; X-pointer contains address of state[nb]
    LDXINCR WR4            ; WR4 = state[nb]
    XORWORD WR4, WR2       ; WR4 = state[nb] ^ tmpy
    XORWORD WR4, WR1       ; WR4 = state[j+nb] ^ tmpy ^ x0
    STXDECR WR1            ; state[nb] = x0
    STZINCR WR4            ; state[nb-2] = WR4
    ADIW    XL, 4          ; increment X-pointer manually
    LDXINCR WR4            ; WR4 = state[nb+1]
    XORWORD WR4, WR0       ; WR4 = state[nb+1] ^ tmpx
    XORWORD WR4, WR3       ; WR4 = state[j+nb+1] ^ tmpx ^ y0
    STXDECR WR3            ; state[nb+1] = y0
    STZINCR WR4            ; state[nb-1] = WR4
    SBIW    XL, 4          ; decrement X-pointer manually
    CLR     ZERO           ; ZERO register was "misused" above
    SUB     XL, NB         ; restore original address of X-pointer
    SBC     XH, ZERO       ; restore original address of X-pointer
    POP     SCNT           ; restore original content of SCNT
    POP     NS             ; restore original content of NS
.endm


///////////////////////////////////////////////////////////////////////////////
///////////////////////////// SPARKLE PERMUTATION /////////////////////////////
///////////////////////////////////////////////////////////////////////////////

// Function prototype:
// -------------------
// void sparkle_avr(uint32_t *state, int nb, int ns)
//
// Parameters:
// -----------
// state: pointer to an uint32-array containing 2*nb state words
// nb: sumber of branches (the state consists of 2*nb 32-bit words)
// ns: number of steps
//
// Return value:
// -------------
// None

.global sparkle_avr
.type sparkle_avr, @function
.func sparkle_avr
sparkle_avr:
    PROLOGUE               ; push callee-saved registers
    CLR SCNT               ; clear step-counter
MAINLOOP:
    ADD_STEP_CNT           ; macro to add step counter to state
    ARXBOX_LAYER           ; macro for the arxbox layer
    LINEAR_LAYER           ; macro for the linear layer
    INC SCNT               ; increment step-counter
    CPSE SCNT, NS          ; test whether step-counter equals ns
    RJMP MAINLOOP          ; if not then jump back to start of loop
    EPILOGUE               ; pop callee-saved registers
    RET
.end func