encrypt.c 5.11 KB
Newer Older
Enrico Pozzobon committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
#include "skinny128.h"
#include "romulus.h"
#include <string.h>

//Encryption and authentication using Romulus-N
int crypto_aead_encrypt
    (unsigned char *c, unsigned long long *clen,
     const unsigned char *m, unsigned long long mlen,
     const unsigned char *ad, unsigned long long adlen,
     const unsigned char *nsec,
     const unsigned char *npub,
     const unsigned char *k) {

    u32 tmp;
    u8 tk1[BLOCKBYTES];
    u32 rtk1[4*BLOCKBYTES];
    u32 rtk2_3[4*SKINNY128_384_ROUNDS];
    u8 state[BLOCKBYTES], pad[BLOCKBYTES];
    (void)nsec;

    // ----------------- Initialization -----------------
    *clen = mlen + TAGBYTES;
    memset(tk1, 0x00, KEYBYTES);
    memset(state, 0x00, BLOCKBYTES);
    tk1[0] = 0x01;                          // Init 56-bit LFSR counter
    // ----------------- Initialization -----------------

    // ----------------- Process the associated data -----------------
    if (adlen == 0) {                       // Handle the special case of no AD
        UPDATE_CTR(tk1);
        SET_DOMAIN(tk1, 0x1A);
        tkschedule_lfsr(rtk2_3, npub, k, SKINNY128_384_ROUNDS);
        tkschedule_perm(rtk2_3);
        tkschedule_perm_tk1(rtk1, tk1);
        skinny128_384(state, rtk2_3, state, rtk1);
    } else {                                // Process double blocks but the last
        SET_DOMAIN(tk1, 0x08);
        while (adlen > 2*BLOCKBYTES) {
            UPDATE_CTR(tk1);
            XOR_BLOCK(state, state, ad);
            tkschedule_lfsr(rtk2_3, ad + BLOCKBYTES, k, SKINNY128_384_ROUNDS);
            tkschedule_perm(rtk2_3);
            tkschedule_perm_tk1(rtk1, tk1);
            skinny128_384(state, rtk2_3, state, rtk1); 
            UPDATE_CTR(tk1);
            ad += 2*BLOCKBYTES;
            adlen -= 2*BLOCKBYTES;
        }
        // Pad and process the left-over blocks 
        UPDATE_CTR(tk1);
        if (adlen == 2*BLOCKBYTES) {        // Left-over complete double block
            XOR_BLOCK(state, state, ad);
            tkschedule_lfsr(rtk2_3, ad + BLOCKBYTES, k, SKINNY128_384_ROUNDS);
            tkschedule_perm(rtk2_3);
            tkschedule_perm_tk1(rtk1, tk1);
            skinny128_384(state, rtk2_3, state, rtk1); 
            UPDATE_CTR(tk1);
            SET_DOMAIN(tk1, 0x18);
        } else if (adlen > BLOCKBYTES) {    // Left-over partial double block
            adlen -= BLOCKBYTES;
            XOR_BLOCK(state, state, ad);
            memcpy(pad, ad + BLOCKBYTES, adlen);
            memset(pad + adlen, 0x00, 15 - adlen);
            pad[15] = adlen;
            tkschedule_lfsr(rtk2_3, pad, k, SKINNY128_384_ROUNDS);
            tkschedule_perm(rtk2_3);
            tkschedule_perm_tk1(rtk1, tk1);
            skinny128_384(state, rtk2_3, state, rtk1); 
            UPDATE_CTR(tk1);
            SET_DOMAIN(tk1, 0x1A);
        } else if (adlen == BLOCKBYTES) {   // Left-over complete single block 
            XOR_BLOCK(state, state, ad);
            SET_DOMAIN(tk1, 0x18);
        } else {                            // Left-over partial single block
            for(int i = 0; i < (int)adlen; i++)
                state[i] ^= ad[i];
            state[15] ^= adlen;             // Padding
            SET_DOMAIN(tk1, 0x1A);
        }
        tkschedule_lfsr(rtk2_3, npub, k, SKINNY128_384_ROUNDS);
        tkschedule_perm(rtk2_3);
        tkschedule_perm_tk1(rtk1, tk1);
        skinny128_384(state, rtk2_3, state, rtk1);
    }
    // ----------------- Process the associated data -----------------

    // ----------------- Process the plaintext -----------------
    memset(tk1, 0x00, KEYBYTES/2);
    tk1[0] = 0x01;                          // Init the 56-bit LFSR counter
    if (mlen == 0) {
        UPDATE_CTR(tk1);
        SET_DOMAIN(tk1, 0x15);
        tkschedule_perm_tk1(rtk1, tk1);
        skinny128_384(state, rtk2_3, state, rtk1);
    } else {                                // Process all blocks except the last
        SET_DOMAIN(tk1, 0x04);
        while (mlen > BLOCKBYTES) {
            RHO(state,c,m);
            UPDATE_CTR(tk1);
            tkschedule_perm_tk1(rtk1, tk1);
            skinny128_384(state, rtk2_3, state, rtk1);
            c += BLOCKBYTES;
            m += BLOCKBYTES;
            mlen -= BLOCKBYTES;
        }
        // Pad and process the last block
        UPDATE_CTR(tk1);
        if (mlen < BLOCKBYTES) {            // Last message single block is full
            for(int i = 0; i < (int)mlen; i++) {
                tmp = m[i];                 // Use of tmp variable in case c = m
                c[i] = m[i] ^ (state[i] >> 1) ^ (state[i] & 0x80) ^ (state[i] << 7);
                state[i] ^= (u8)tmp;
            }
            state[15] ^= (u8)mlen;          // Padding
            SET_DOMAIN(tk1, 0x15);
        } else {                            // Last message single block is partial
            RHO(state,c,m);
            SET_DOMAIN(tk1, 0x14);
        }
        tkschedule_perm_tk1(rtk1, tk1);
        skinny128_384(state, rtk2_3, state, rtk1);
        c += mlen;
    }
    // ----------------- Process the plaintext -----------------

    // ----------------- Generate the tag -----------------
    G(c,state);
    // ----------------- Generate the tag -----------------

    return 0;
}