decrypt.c 6.8 KB
Newer Older
Enrico Pozzobon committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#include "skinny128.h"
#include "tk_schedule.h"
#include "romulus.h"
#include "domain.h"
#include <string.h>
#include <stdio.h>

//Decryption and tag verification using Romulus-N1
int crypto_aead_decrypt
    (unsigned char *m, unsigned long long *mlen,
     unsigned char *nsec,
     const unsigned char *c, unsigned long long clen,
     const unsigned char *ad, unsigned long long adlen,
     const unsigned char *npub,
     const unsigned char *k) {

    u32 tmp;
    u64 tmp_mlen;
    u8 final_domain = 0x30;
    u8* m_auth = m;
    const u8* c_tmp = c;
    skinny_128_384_tks tks;
    u8 state[BLOCKBYTES], pad[BLOCKBYTES];
    (void)nsec;

    if (clen < TAGBYTES)
        return -1;

    // ----------------- Initialization -----------------
    *mlen = clen - TAGBYTES;
    memset(tks.tk1, 0x00, KEYBYTES);
    tks.tk1[0] = 0x01;                          // Init the 56-bit LFSR counter
    // ----------------- Initialization -----------------

    // ----------------- Process the ciphertext -----------------
    clen -= TAGBYTES;
    memcpy(state, c + clen, TAGBYTES);
    tmp_mlen = clen;
    if (tmp_mlen > 0) {
        SET_DOMAIN(tks, 0x24);
        precompute_rtk2_3(tks.rtk2_3, npub, k);
        while (tmp_mlen > BLOCKBYTES) {
            precompute_rtk1(tks.rtk1, tks.tk1);
            skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
            RHO_INV(state, c, m);
            UPDATE_CTR(tks.tk1);
            c += BLOCKBYTES;
            m += BLOCKBYTES;
            tmp_mlen -= BLOCKBYTES;
        }
        precompute_rtk1(tks.rtk1, tks.tk1);
        skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
        for(int i = 0; i < (int)tmp_mlen; i++) {
            m[i] = c[i] ^ (state[i] >> 1) ^ (state[i] & 0x80) ^ (state[i] << 7);
            state[i] ^= m[i];
        }
        state[15] ^= (u8)tmp_mlen;          // Padding
    }
    // ----------------- Process the ciphertext -----------------
    
    // ----------------- Process the associated data -----------------
    memset(tks.tk1, 0x00, KEYBYTES);
    tks.tk1[0] = 0x01;                      // Init the 56-bit LFSR counter
    memset(state, 0x00, BLOCKBYTES);
    final_domain ^= final_ad_domain(adlen, clen);
    SET_DOMAIN(tks, 0x28);
    while (adlen > 2*BLOCKBYTES) {          // Process double blocks but the last
        UPDATE_CTR(tks.tk1);
        XOR_BLOCK(state, state, ad);
        precompute_rtk2_3(tks.rtk2_3, ad + BLOCKBYTES, k);
        precompute_rtk1(tks.rtk1, tks.tk1);
        skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
        UPDATE_CTR(tks.tk1);
        ad += 2*BLOCKBYTES;
        adlen -= 2*BLOCKBYTES;
    }
    // Pad and process the left-over blocks 
    if (adlen == 2*BLOCKBYTES) {            // Left-over complete double block
        UPDATE_CTR(tks.tk1);
        XOR_BLOCK(state, state, ad);
        precompute_rtk2_3(tks.rtk2_3, ad + BLOCKBYTES, k);
        precompute_rtk1(tks.rtk1, tks.tk1);
        skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
        UPDATE_CTR(tks.tk1);
    } else if (adlen > BLOCKBYTES) {        // Left-over partial double block
        adlen -= BLOCKBYTES;
        UPDATE_CTR(tks.tk1);
        XOR_BLOCK(state, state, ad);
        memcpy(pad, ad + BLOCKBYTES, adlen);
        memset(pad + adlen, 0x00, 15 - adlen);
        pad[15] = adlen;                    // Padding
        precompute_rtk2_3(tks.rtk2_3, pad, k);
        precompute_rtk1(tks.rtk1, tks.tk1);
        skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
        UPDATE_CTR(tks.tk1);
    } else {
        SET_DOMAIN(tks, 0x2C);
        UPDATE_CTR(tks.tk1);
        if (adlen == BLOCKBYTES) {          // Left-over complete single block 
            XOR_BLOCK(state, state, ad);
        } else {                            // Left-over partial single block
            for(int i =0; i < (int)adlen; i++)
                state[i] ^= ad[i];
            state[15] ^= adlen;             // Padding
        }
        if (clen >= BLOCKBYTES) {
            precompute_rtk2_3(tks.rtk2_3, m_auth, k);
            precompute_rtk1(tks.rtk1, tks.tk1);
            skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
            m_auth += BLOCKBYTES;
            clen -= BLOCKBYTES;
            if (clen > BLOCKBYTES) {
                UPDATE_CTR(tks.tk1);
            }
        } else {
            memcpy(pad, m_auth, clen);
            memset(pad + clen, 0x00, BLOCKBYTES - clen - 1);
            pad[15] = (u8)clen;             // Padding
            precompute_rtk2_3(tks.rtk2_3, pad, k);
            precompute_rtk1(tks.rtk1, tks.tk1);
            skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
            clen = 0;
        }
    }
    // Process all message double blocks except the last
    SET_DOMAIN(tks, 0x2C);
    while (clen > 32) {
        UPDATE_CTR(tks.tk1);
        XOR_BLOCK(state, state, m_auth);
        precompute_rtk2_3(tks.rtk2_3, m_auth + BLOCKBYTES, k);
        precompute_rtk1(tks.rtk1, tks.tk1);
        skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
        UPDATE_CTR(tks.tk1);
        m_auth += 2 * BLOCKBYTES;
        clen -= 2 * BLOCKBYTES;
    }
    // Process the last message double block
    if (clen == 2 * BLOCKBYTES) {             // Last message double block is full
        UPDATE_CTR(tks.tk1);
        XOR_BLOCK(state, state, m_auth);
        precompute_rtk2_3(tks.rtk2_3, m_auth + BLOCKBYTES, k);
        precompute_rtk1(tks.rtk1, tks.tk1);
        skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
    } else if (clen > BLOCKBYTES) {         // Last message double block is partial
        clen -= BLOCKBYTES;
        UPDATE_CTR(tks.tk1);
        XOR_BLOCK(state, state, m_auth);
        memcpy(pad, m_auth + BLOCKBYTES, clen);
        memset(pad + clen, 0x00, BLOCKBYTES - clen - 1);
        pad[15] = (u8)clen;                 // Padding
        precompute_rtk2_3(tks.rtk2_3, pad, k);
        precompute_rtk1(tks.rtk1, tks.tk1);
        skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
    } else if (clen == BLOCKBYTES) {        // Last message single block is full
        XOR_BLOCK(state, state, m_auth);
    } else if (clen > 0) {                  // Last message single block is partial
        for(int i =0; i < (int)clen; i++)
            state[i] ^= m[i];
        state[15] ^= (u8)clen;              // Padding
    }
    // Process the last partial block
    SET_DOMAIN(tks, final_domain);
    UPDATE_CTR(tks.tk1);
    precompute_rtk2_3(tks.rtk2_3, npub, k);
    precompute_rtk1(tks.rtk1, tks.tk1);
    skinny128_384_plus(state, state, tks.rtk1, tks.rtk2_3);
    // ----------------- Process the associated data -----------------

    // ----------------- Generate and check the tag -----------------
    G(state,state);
    tmp = 0;
    for(int i = 0; i < TAGBYTES; i++)
        tmp |= state[i] ^ c_tmp[*mlen+i];   //constant-time tag comparison
    // ----------------- Generate and check the tag -----------------

    return tmp;
}