internal-grain128.c 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/*
 * Copyright (C) 2021 Southern Storm Software, Pty Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "internal-grain128.h"

/* Determine which primitives should be accelerated with assembly code */
#if defined(__AVR__)
#define GRAIN128_ASM_CORE 1
#define GRAIN128_ASM_PREOUTPUT 1
#define GRAIN128_ASM_KEYSTREAM 0
#define GRAIN128_ASM_HELPERS 1
#elif defined(__ARM_ARCH_ISA_THUMB) && __ARM_ARCH == 7
#define GRAIN128_ASM_CORE 1
#define GRAIN128_ASM_PREOUTPUT 1
#define GRAIN128_ASM_KEYSTREAM 1
#define GRAIN128_ASM_HELPERS 0
#else
#define GRAIN128_ASM_CORE 0
#define GRAIN128_ASM_PREOUTPUT 0
#define GRAIN128_ASM_KEYSTREAM 0
#define GRAIN128_ASM_HELPERS 0
#endif

/* Extracts 32 bits from the Grain state that are not word-aligned */
#define GWORD(a, b, start_bit) \
        (((a) << ((start_bit) % 32)) ^ ((b) >> (32 - ((start_bit) % 32))))

#if !GRAIN128_ASM_CORE

void grain128_core
    (grain128_state_t *state, uint32_t x, uint32_t x2)
{
    uint32_t s0, s1, s2, s3;

    /* From the Grain-128AEAD specification, the LFSR feedback algorithm is:
     *
     *      s'[i] = s[i + 1]
     *      s'[127] = s[0] ^ s[7] ^ s[38] ^ s[70] ^ s[81] ^ s[96] ^ x
     *
     * The bits are numbered from the most significant bit in the first
     * word of the LFSR state.  Calculate the feedback bits 32 at a time.
     */
    s0 = state->lfsr[0];
    s1 = state->lfsr[1];
    s2 = state->lfsr[2];
    s3 = state->lfsr[3];
    x ^= s0;                        /* s[0] */
    x ^= GWORD(s0, s1, 7);          /* s[7] */
    x ^= GWORD(s1, s2, 38);         /* s[38] */
    x ^= GWORD(s2, s3, 70);         /* s[70] */
    x ^= GWORD(s2, s3, 81);         /* s[81] */
    x ^= s3;                        /* s[96] */

    /* Rotate the LFSR state left by 32 bits and feed s0 into the NFSR */
    state->lfsr[0] = s1;
    state->lfsr[1] = s2;
    state->lfsr[2] = s3;
    state->lfsr[3] = x;
    x2 ^= s0;

    /* Perform the NFSR feedback algorithm from the specification:
     *
     *      b'[i] = b[i + 1]
     *      b'[127] = s[0] ^ b[0] ^ b[26] ^ b[56] ^ b[91] ^ b[96]
     *              ^ (b[3] & b[67]) ^ (b[11] & b[13]) ^ (b[17] & b[18])
     *              ^ (b[27] & b[59]) ^ (b[40] & b[48]) ^ (b[61] & b[65])
     *              ^ (b[68] & b[84]) ^ (b[22] & b[24] & b[25])
     *              ^ (b[70] & b[78] & b[82])
     *              ^ (b[88] & b[92] & b[93] & b[95]) ^ x2
     *
     * Once again, we calculate 32 feedback bits in parallel.
     */
    s0 = state->nfsr[0];
    s1 = state->nfsr[1];
    s2 = state->nfsr[2];
    s3 = state->nfsr[3];
    x2 ^= s0;                                       /* b[0] */
    x2 ^= GWORD(s0, s1, 26);                        /* b[26] */
    x2 ^= GWORD(s1, s2, 56);                        /* b[56] */
    x2 ^= GWORD(s2, s3, 91);                        /* b[91] */
    x2 ^= s3;                                       /* b[96] */
    x2 ^= GWORD(s0, s1,  3) & GWORD(s2, s3, 67);    /* b[3] & b[67] */
    x2 ^= GWORD(s0, s1, 11) & GWORD(s0, s1, 13);    /* b[11] & b[13] */
    x2 ^= GWORD(s0, s1, 17) & GWORD(s0, s1, 18);    /* b[17] & b[18] */
    x2 ^= GWORD(s0, s1, 27) & GWORD(s1, s2, 59);    /* b[27] & b[59] */
    x2 ^= GWORD(s1, s2, 40) & GWORD(s1, s2, 48);    /* b[40] & b[48] */
    x2 ^= GWORD(s1, s2, 61) & GWORD(s2, s3, 65);    /* b[61] & b[65] */
    x2 ^= GWORD(s2, s3, 68) & GWORD(s2, s3, 84);    /* b[68] & b[84] */
    x2 ^= GWORD(s0, s1, 22) & GWORD(s0, s1, 24) &   /* b[22] & b[24] & b[25] */
          GWORD(s0, s1, 25);
    x2 ^= GWORD(s2, s3, 70) & GWORD(s2, s3, 78) &   /* b[70] & b[78] & b[82] */
          GWORD(s2, s3, 82);
    x2 ^= GWORD(s2, s3, 88) & GWORD(s2, s3, 92) &   /* b[88] & b[92] ... */
          GWORD(s2, s3, 93) & GWORD(s2, s3, 95);    /* ... & b[93] & b[95] */

    /* Rotate the NFSR state left by 32 bits */
    state->nfsr[0] = s1;
    state->nfsr[1] = s2;
    state->nfsr[2] = s3;
    state->nfsr[3] = x2;
}

#endif /* !GRAIN128_ASM_CORE */

#if !GRAIN128_ASM_PREOUTPUT

uint32_t grain128_preoutput(const grain128_state_t *state)
{
    uint32_t s0, s1, s2, s3;
    uint32_t b0, b1, b2, b3;
    uint32_t x0, x4, y;

    /* From the Grain-128AEAD specification, each pre-output bit y is given by:
     *
     *      x[0..8] = b[12], s[8], s[13], s[20], b[95],
     *                s[42], s[60], s[79], s[94]
     *      h(x) = (x[0] & x[1]) ^ (x[2] & x[3]) ^ (x[4] & x[5])
     *           ^ (x[6] & x[7]) ^ (x[0] & x[4] & x[8])
     *      y = h(x) ^ s[93] ^ b[2] ^ b[15] ^ b[36] ^ b[45]
     *               ^ b[64] ^ b[73] ^ b[89]
     *
     * Calculate 32 pre-output bits in parallel.
     */
    s0 = state->lfsr[0];
    s1 = state->lfsr[1];
    s2 = state->lfsr[2];
    s3 = state->lfsr[3];
    b0 = state->nfsr[0];
    b1 = state->nfsr[1];
    b2 = state->nfsr[2];
    b3 = state->nfsr[3];
    x0 = GWORD(b0, b1, 12);
    x4 = GWORD(b2, b3, 95);
    y  = (x0 & GWORD(s0, s1, 8));                   /* x[0] & x[1] */
    y ^= (GWORD(s0, s1, 13) & GWORD(s0, s1, 20));   /* x[2] & x[3] */
    y ^= (x4 & GWORD(s1, s2, 42));                  /* x[4] & x[5] */
    y ^= (GWORD(s1, s2, 60) & GWORD(s2, s3, 79));   /* x[6] & x[7] */
    y ^= (x0 & x4 & GWORD(s2, s3, 94));             /* x[0] & x[4] & x[8] */
    y ^= GWORD(s2, s3, 93);                         /* s[93] */
    y ^= GWORD(b0, b1, 2);                          /* b[2] */
    y ^= GWORD(b0, b1, 15);                         /* b[15] */
    y ^= GWORD(b1, b2, 36);                         /* b[36] */
    y ^= GWORD(b1, b2, 45);                         /* b[45] */
    y ^= b2;                                        /* b[64] */
    y ^= GWORD(b2, b3, 73);                         /* b[73] */
    y ^= GWORD(b2, b3, 89);                         /* b[89] */
    return y;
}

#endif /* !GRAIN128_ASM_PREOUTPUT */

/* http://programming.sirrida.de/perm_fn.html#bit_permute_step */
#define bit_permute_step(_y, mask, shift) \
    do { \
        uint32_t y = (_y); \
        uint32_t t = ((y >> (shift)) ^ y) & (mask); \
        (_y) = (y ^ t) ^ (t << (shift)); \
    } while (0)

/* http://programming.sirrida.de/perm_fn.html#bit_permute_step_simple */
#define bit_permute_step_simple(_y, mask, shift) \
    do { \
        (_y) = (((_y) & (mask)) << (shift)) | (((_y) >> (shift)) & (mask)); \
    } while (0)

#if GRAIN128_ASM_HELPERS

/**
 * \brief Loads a 32-bit word and swaps it from big-endian bit order
 * into little-endian bit order.
 *
 * \param data Points to the word to be loaded.
 * \return Little-endian version of the 32-bit word at \a data.
 */
uint32_t grain128_swap_word32(const unsigned char *data);

/**
 * \brief Interleaves the bits in a 16-byte keystream block to separate
 * out the even and odd bits.
 *
 * \param ks Points to the keystream block.
 */
void grain128_interleave(unsigned char *ks);

#endif

void grain128_setup
    (grain128_state_t *state, const unsigned char *key,
     const unsigned char *nonce)
{
    uint32_t k[4];
    uint32_t y;
    uint8_t round;

    /* Internally, the Grain-128 stream cipher uses big endian bit
     * order, but the Grain-128AEAD specification for NIST uses little
     * endian bit order.  We need to swap the bits around when we load
     * the bits of the key and the nonce.
     *
     * Permutation generated with "http://programming.sirrida.de/calcperm.php".
     *
     * P = [7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
     *      23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24]
     */
    #if GRAIN128_ASM_HELPERS
    #define SWAP_BITS(out, in) \
        do { \
            (out) = grain128_swap_word32((in)); \
        } while (0)
    #else
    #define SWAP_BITS(out, in) \
        do { \
            uint32_t tmp = be_load_word32((in)); \
            bit_permute_step_simple(tmp, 0x55555555, 1); \
            bit_permute_step_simple(tmp, 0x33333333, 2); \
            bit_permute_step_simple(tmp, 0x0f0f0f0f, 4); \
            (out) = tmp; \
        } while (0)
    #endif

    /* Initialize the LFSR state with the nonce and padding */
    SWAP_BITS(state->lfsr[0], nonce);
    SWAP_BITS(state->lfsr[1], nonce + 4);
    SWAP_BITS(state->lfsr[2], nonce + 8);
    state->lfsr[3] = 0xFFFFFFFEU; /* pad with all-1s and a terminating 0 */

    /* Initialize the NFSR state with the key */
    SWAP_BITS(k[0], key);
    SWAP_BITS(k[1], key + 4);
    SWAP_BITS(k[2], key + 8);
    SWAP_BITS(k[3], key + 12);
    state->nfsr[0] = k[0];
    state->nfsr[1] = k[1];
    state->nfsr[2] = k[2];
    state->nfsr[3] = k[3];

    /* Perform 320 rounds of Grain-128 to mix up the initial state.
     * The rounds can be performed 32 at a time: 32 * 10 = 320 */
    for (round = 0; round < 10; ++round) {
        y = grain128_preoutput(state);
        grain128_core(state, y, y);
    }

    /* Re-introduce the key into the LFSR and NFSR state */
    y = grain128_preoutput(state);
    grain128_core(state, y ^ k[2], y ^ k[0]);
    y = grain128_preoutput(state);
    grain128_core(state, y ^ k[3], y ^ k[1]);

    /* Generate the initial state of the accumulator and the shift register */
    state->accum = ((uint64_t)(grain128_preoutput(state))) << 32;
    grain128_core(state, 0, 0);
    state->accum |= grain128_preoutput(state);
    grain128_core(state, 0, 0);
    state->sr = ((uint64_t)(grain128_preoutput(state))) << 32;
    grain128_core(state, 0, 0);
    state->sr |= grain128_preoutput(state);
    grain128_core(state, 0, 0);

    /* No keystream data has been generated yet */
    state->posn = sizeof(state->ks);
}

#if GRAIN128_ASM_KEYSTREAM

/* Unrolled assembly version of grain128_next_keystream() is available */
void grain128_next_keystream(grain128_state_t *state);

#else /* !GRAIN128_ASM_KEYSTREAM */

/**
 * \brief Generates the next 16 byte block of keystream output data.
 *
 * \param state Grain-128 state.
 */
static void grain128_next_keystream(grain128_state_t *state)
{
#if !GRAIN128_ASM_HELPERS
    unsigned posn;
    for (posn = 0; posn < sizeof(state->ks); posn += 4) {
        /* Get the next word of pre-output and run the Grain-128 core */
        uint32_t x = grain128_preoutput(state);
        grain128_core(state, 0, 0);

        /* Grain-128 uses big-endian bit order, but the NIST functions
         * that are built on top of this use little-endian bit order.
         * Swap the bits around so that they are ready for use later.
         *
         * We also need to separate the bits: even bits are used to encrypt
         * and odd bits are used to authenticate.  Shift them to separate
         * bytes to make it easier to access the even and odd bits later.
         *
         * P = [7 15 6 14 5 13 4 12 3 11 2 10 1 9 0 8
         *      23 31 22 30 21 29 20 28 19 27 18 26 17 25 16 24]
         */
        bit_permute_step(x, 0x11111111, 3);
        bit_permute_step(x, 0x03030303, 6);
        bit_permute_step(x, 0x000f000f, 12);
        bit_permute_step_simple(x, 0x00ff00ff, 8);
        be_store_word32(state->ks + posn, x);
    }
#else
    /* Generate the data and then perform the interleaving */
    unsigned posn;
    for (posn = 0; posn < sizeof(state->ks); posn += 4) {
        uint32_t x = grain128_preoutput(state);
        le_store_word32(state->ks + posn, x);
        grain128_core(state, 0, 0);
    }
    grain128_interleave(state->ks);
#endif
}

#endif /* !GRAIN128_ASM_KEYSTREAM */

void grain128_authenticate
    (grain128_state_t *state, const unsigned char *data,
     size_t len)
{
    unsigned char abyte;
    unsigned char sbyte;
    unsigned char bit;
    uint64_t accum = state->accum;
    uint64_t sr = state->sr;
    unsigned posn = state->posn;
    while (len > 0) {
        /* Fetch the next byte to be authenticated */
        abyte = *data++;
        --len;

        /* Request more keystream data if necessary */
        if (posn >= sizeof(state->ks)) {
            grain128_next_keystream(state);
            posn = 0;
        }

        /* Get the next byte of keystream to add to the shift register.
         * We use the odd bytes from the keystream and ignore even ones */
        sbyte = state->ks[posn + 1];
        posn += 2;

        /* XOR the shift register with the accumulator for each 1 bit
         * in the byte that we are authenticating.  And shift in the
         * keystream byte we retrieved above */
        for (bit = 0; bit < 8; ++bit) {
            accum ^= sr & (-((uint64_t)(abyte & 0x01)));
            sr = (sr << 1) ^ (sbyte & 0x01);
            abyte >>= 1;
            sbyte >>= 1;
        }
    }
    state->accum = accum;
    state->sr = sr;
    state->posn = posn;
}

void grain128_encrypt
    (grain128_state_t *state, unsigned char *c, const unsigned char *m,
     size_t len)
{
    unsigned char mbyte;
    unsigned char sbyte;
    unsigned char bit;
    uint64_t accum = state->accum;
    uint64_t sr = state->sr;
    unsigned posn = state->posn;
    while (len > 0) {
        /* Fetch the next byte to be encrypted and authenticated */
        mbyte = *m++;
        --len;

        /* Request more keystream data if necessary */
        if (posn >= sizeof(state->ks)) {
            grain128_next_keystream(state);
            posn = 0;
        }

        /* Get the next two bytes of keystream data.  The even byte is
         * used to encrypt the input and the odd byte is shifted into
         * the shift register for authentication purposes */
        *c++ = mbyte ^ state->ks[posn];
        sbyte = state->ks[posn + 1];
        posn += 2;

        /* XOR the shift register with the accumulator for each 1 bit
         * in the plaintext byte that we are authenticating.  And shift
         * in the keystream byte we retrieved above */
        for (bit = 0; bit < 8; ++bit) {
            accum ^= sr & (-((uint64_t)(mbyte & 0x01)));
            sr = (sr << 1) ^ (sbyte & 0x01);
            mbyte >>= 1;
            sbyte >>= 1;
        }
    }
    state->accum = accum;
    state->sr = sr;
    state->posn = posn;
}

void grain128_decrypt
    (grain128_state_t *state, unsigned char *m, const unsigned char *c,
     size_t len)
{
    unsigned char mbyte;
    unsigned char sbyte;
    unsigned char bit;
    uint64_t accum = state->accum;
    uint64_t sr = state->sr;
    unsigned posn = state->posn;
    while (len > 0) {
        /* Fetch the next byte to be decrypted and authenticated */
        mbyte = *c++;
        --len;

        /* Request more keystream data if necessary */
        if (posn >= sizeof(state->ks)) {
            grain128_next_keystream(state);
            posn = 0;
        }

        /* Get the next two bytes of keystream data.  The even byte is
         * used to decrypt the input and the odd byte is shifted into
         * the shift register for authentication purposes */
        mbyte ^= state->ks[posn];
        *m++ = mbyte;
        sbyte = state->ks[posn + 1];
        posn += 2;

        /* XOR the shift register with the accumulator for each 1 bit
         * in the plaintext byte that we are authenticating.  And shift
         * in the keystream byte we retrieved above */
        for (bit = 0; bit < 8; ++bit) {
            accum ^= sr & (-((uint64_t)(mbyte & 0x01)));
            sr = (sr << 1) ^ (sbyte & 0x01);
            mbyte >>= 1;
            sbyte >>= 1;
        }
    }
    state->accum = accum;
    state->sr = sr;
    state->posn = posn;
}

#if !defined(__AVR__)

void grain128_compute_tag(grain128_state_t *state)
{
    uint64_t x;

    /* Authenticate a final 1 bit as padding on the stream */
    state->accum ^= state->sr;

    /* Swap the bits of the accumulator into little endian
     * order and write them to the keystream buffer */
    x = state->accum;
    bit_permute_step_simple(x, 0x5555555555555555ULL, 1);
    bit_permute_step_simple(x, 0x3333333333333333ULL, 2);
    bit_permute_step_simple(x, 0x0f0f0f0f0f0f0f0fULL, 4);
    be_store_word64(state->ks, x);
}

#endif /* !__AVR__ */