skinny_reference.c 20 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * SKINNY Block Cipher Reference C Implementation
 * 
 * Copyright 2018:
 *     Thomas Peyrin and Jeremy Jean for the SKINNY Team
 *     https://sites.google.com/site/skinnycipher/
 * 
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 * 
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

// #define DEBUG 1

// Table that encodes the parameters of the various SKINNY versions:
// (block size, key size, number of rounds)
static const int versions[6][3] = {
    { 64, 64, 32}, /* [0] -> SKINNY-64-64:   32 rounds */
    { 64,128, 36}, /* [1] -> SKINNY-64-128:  36 rounds */
    { 64,192, 40}, /* [2] -> SKINNY-64-192:  40 rounds */
    {128,128, 40}, /* [3] -> SKINNY-128-128: 40 rounds */
    {128,256, 48}, /* [4] -> SKINNY-128-256: 48 rounds */
    {128,384, 56}  /* [5] -> SKINNY-128-384: 56 rounds */
};

// 4-bit Sbox
static const uint8_t sbox_4[16] = {12,6,9,0,1,10,2,11,3,8,5,13,4,14,7,15};
static const uint8_t sbox_4_inv[16] = {3,4,6,8,12,10,1,14,9,2,5,7,0,11,13,15};

// 8-bit Sbox
static const uint8_t sbox_8[256] = {0x65,0x4c,0x6a,0x42,0x4b,0x63,0x43,0x6b,0x55,0x75,0x5a,0x7a,0x53,0x73,0x5b,0x7b ,0x35,0x8c,0x3a,0x81,0x89,0x33,0x80,0x3b,0x95,0x25,0x98,0x2a,0x90,0x23,0x99,0x2b ,0xe5,0xcc,0xe8,0xc1,0xc9,0xe0,0xc0,0xe9,0xd5,0xf5,0xd8,0xf8,0xd0,0xf0,0xd9,0xf9 ,0xa5,0x1c,0xa8,0x12,0x1b,0xa0,0x13,0xa9,0x05,0xb5,0x0a,0xb8,0x03,0xb0,0x0b,0xb9 ,0x32,0x88,0x3c,0x85,0x8d,0x34,0x84,0x3d,0x91,0x22,0x9c,0x2c,0x94,0x24,0x9d,0x2d ,0x62,0x4a,0x6c,0x45,0x4d,0x64,0x44,0x6d,0x52,0x72,0x5c,0x7c,0x54,0x74,0x5d,0x7d ,0xa1,0x1a,0xac,0x15,0x1d,0xa4,0x14,0xad,0x02,0xb1,0x0c,0xbc,0x04,0xb4,0x0d,0xbd ,0xe1,0xc8,0xec,0xc5,0xcd,0xe4,0xc4,0xed,0xd1,0xf1,0xdc,0xfc,0xd4,0xf4,0xdd,0xfd ,0x36,0x8e,0x38,0x82,0x8b,0x30,0x83,0x39,0x96,0x26,0x9a,0x28,0x93,0x20,0x9b,0x29 ,0x66,0x4e,0x68,0x41,0x49,0x60,0x40,0x69,0x56,0x76,0x58,0x78,0x50,0x70,0x59,0x79 ,0xa6,0x1e,0xaa,0x11,0x19,0xa3,0x10,0xab,0x06,0xb6,0x08,0xba,0x00,0xb3,0x09,0xbb ,0xe6,0xce,0xea,0xc2,0xcb,0xe3,0xc3,0xeb,0xd6,0xf6,0xda,0xfa,0xd3,0xf3,0xdb,0xfb ,0x31,0x8a,0x3e,0x86,0x8f,0x37,0x87,0x3f,0x92,0x21,0x9e,0x2e,0x97,0x27,0x9f,0x2f ,0x61,0x48,0x6e,0x46,0x4f,0x67,0x47,0x6f,0x51,0x71,0x5e,0x7e,0x57,0x77,0x5f,0x7f ,0xa2,0x18,0xae,0x16,0x1f,0xa7,0x17,0xaf,0x01,0xb2,0x0e,0xbe,0x07,0xb7,0x0f,0xbf ,0xe2,0xca,0xee,0xc6,0xcf,0xe7,0xc7,0xef,0xd2,0xf2,0xde,0xfe,0xd7,0xf7,0xdf,0xff};
static const uint8_t sbox_8_inv[256] = {0xac,0xe8,0x68,0x3c,0x6c,0x38,0xa8,0xec,0xaa,0xae,0x3a,0x3e,0x6a,0x6e,0xea,0xee ,0xa6,0xa3,0x33,0x36,0x66,0x63,0xe3,0xe6,0xe1,0xa4,0x61,0x34,0x31,0x64,0xa1,0xe4 ,0x8d,0xc9,0x49,0x1d,0x4d,0x19,0x89,0xcd,0x8b,0x8f,0x1b,0x1f,0x4b,0x4f,0xcb,0xcf ,0x85,0xc0,0x40,0x15,0x45,0x10,0x80,0xc5,0x82,0x87,0x12,0x17,0x42,0x47,0xc2,0xc7 ,0x96,0x93,0x03,0x06,0x56,0x53,0xd3,0xd6,0xd1,0x94,0x51,0x04,0x01,0x54,0x91,0xd4 ,0x9c,0xd8,0x58,0x0c,0x5c,0x08,0x98,0xdc,0x9a,0x9e,0x0a,0x0e,0x5a,0x5e,0xda,0xde ,0x95,0xd0,0x50,0x05,0x55,0x00,0x90,0xd5,0x92,0x97,0x02,0x07,0x52,0x57,0xd2,0xd7 ,0x9d,0xd9,0x59,0x0d,0x5d,0x09,0x99,0xdd,0x9b,0x9f,0x0b,0x0f,0x5b,0x5f,0xdb,0xdf ,0x16,0x13,0x83,0x86,0x46,0x43,0xc3,0xc6,0x41,0x14,0xc1,0x84,0x11,0x44,0x81,0xc4 ,0x1c,0x48,0xc8,0x8c,0x4c,0x18,0x88,0xcc,0x1a,0x1e,0x8a,0x8e,0x4a,0x4e,0xca,0xce ,0x35,0x60,0xe0,0xa5,0x65,0x30,0xa0,0xe5,0x32,0x37,0xa2,0xa7,0x62,0x67,0xe2,0xe7 ,0x3d,0x69,0xe9,0xad,0x6d,0x39,0xa9,0xed,0x3b,0x3f,0xab,0xaf,0x6b,0x6f,0xeb,0xef ,0x26,0x23,0xb3,0xb6,0x76,0x73,0xf3,0xf6,0x71,0x24,0xf1,0xb4,0x21,0x74,0xb1,0xf4 ,0x2c,0x78,0xf8,0xbc,0x7c,0x28,0xb8,0xfc,0x2a,0x2e,0xba,0xbe,0x7a,0x7e,0xfa,0xfe ,0x25,0x70,0xf0,0xb5,0x75,0x20,0xb0,0xf5,0x22,0x27,0xb2,0xb7,0x72,0x77,0xf2,0xf7 ,0x2d,0x79,0xf9,0xbd,0x7d,0x29,0xb9,0xfd,0x2b,0x2f,0xbb,0xbf,0x7b,0x7f,0xfb,0xff};

// ShiftAndSwitchRows permutation
static const uint8_t P[16] = {0,1,2,3,7,4,5,6,10,11,8,9,13,14,15,12};
static const uint8_t P_inv[16] = {0,1,2,3,5,6,7,4,10,11,8,9,15,12,13,14};

// Tweakey permutation
static const uint8_t TWEAKEY_P[16] = {9,15,8,13,10,14,12,11,0,1,2,3,4,5,6,7};
static const uint8_t TWEAKEY_P_inv[16] = {8,9,10,11,12,13,14,15,2,0,4,7,6,3,5,1};

// round constants
static const uint8_t RC[62] = {
		0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3E, 0x3D, 0x3B, 0x37, 0x2F,
		0x1E, 0x3C, 0x39, 0x33, 0x27, 0x0E, 0x1D, 0x3A, 0x35, 0x2B,
		0x16, 0x2C, 0x18, 0x30, 0x21, 0x02, 0x05, 0x0B, 0x17, 0x2E,
		0x1C, 0x38, 0x31, 0x23, 0x06, 0x0D, 0x1B, 0x36, 0x2D, 0x1A,
		0x34, 0x29, 0x12, 0x24, 0x08, 0x11, 0x22, 0x04, 0x09, 0x13,
		0x26, 0x0c, 0x19, 0x32, 0x25, 0x0a, 0x15, 0x2a, 0x14, 0x28,
		0x10, 0x20};

#ifdef DEBUG
static FILE* fic;

static void display_matrix(uint8_t state[4][4], int ver) {
    int i;
    uint8_t input[16];

    if (versions[ver][0]==64) {
        for(i = 0; i < 8; i++) input[i] = ((state[(2*i)>>2][(2*i)&0x3] & 0xF) << 4) | (state[(2*i+1)>>2][(2*i+1)&0x3] & 0xF);
         for(i = 0; i < 8; i++) fprintf(fic,"%02x", input[i]);

    } else if (versions[ver][0]==128) {
        for(i = 0; i < 16; i++) input[i] = state[i>>2][i&0x3] & 0xFF;
        for(i = 0; i < 16; i++) fprintf(fic,"%02x", input[i]);
    }

}

static void display_cipher_state(uint8_t state[4][4], uint8_t keyCells[3][4][4], int ver) {
    int k;

    fprintf(fic,"S = ");display_matrix(state,ver);
    for(k = 0; k <(int)(versions[ver][1]/versions[ver][0]); k++) {
        fprintf(fic," - TK%i = ",k+1); display_matrix(keyCells[k],ver);
    }
}
#endif


// Extract and apply the subtweakey to the internal state (must be the two top rows XORed together), then update the tweakey state
static void AddKey(uint8_t state[4][4], uint8_t keyCells[3][4][4], int ver) {
	int i, j, k;
	uint8_t pos;
	uint8_t keyCells_tmp[3][4][4];

    // apply the subtweakey to the internal state
    for(i = 0; i <= 1; i++) {
        for(j = 0; j < 4; j++) {
            state[i][j] ^= keyCells[0][i][j];
            if (2*versions[ver][0]==versions[ver][1]) state[i][j] ^= keyCells[1][i][j];
            else if (3*versions[ver][0]==versions[ver][1]) state[i][j] ^= keyCells[1][i][j] ^ keyCells[2][i][j];
        }
    }

    // update the subtweakey states with the permutation
    for(k = 0; k <(int)(versions[ver][1]/versions[ver][0]); k++) {
        for(i = 0; i < 4; i++) {
            for(j = 0; j < 4; j++) {
                //application of the TWEAKEY permutation
                pos=TWEAKEY_P[j+4*i];
                keyCells_tmp[k][i][j]=keyCells[k][pos>>2][pos&0x3];
            }
        }
    }

    // update the subtweakey states with the LFSRs
    for(k = 0; k <(int)(versions[ver][1]/versions[ver][0]); k++) {
        for(i = 0; i <= 1; i++) {
            for(j = 0; j < 4; j++) {
                //application of LFSRs for TK updates
                if (k==1) {
                    if (versions[ver][0]==64)
                        keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]<<1)&0xE)^((keyCells_tmp[k][i][j]>>3)&0x1)^((keyCells_tmp[k][i][j]>>2)&0x1);
                    else
                        keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]<<1)&0xFE)^((keyCells_tmp[k][i][j]>>7)&0x01)^((keyCells_tmp[k][i][j]>>5)&0x01);

                } else if (k==2) {
                    if (versions[ver][0]==64)
                        keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]>>1)&0x7)^((keyCells_tmp[k][i][j])&0x8)^((keyCells_tmp[k][i][j]<<3)&0x8);
                    else
                        keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]>>1)&0x7F)^((keyCells_tmp[k][i][j]<<7)&0x80)^((keyCells_tmp[k][i][j]<<1)&0x80);
                }
            }
        }
    }

    for(k = 0; k <(int)(versions[ver][1]/versions[ver][0]); k++) {
        for(i = 0; i < 4; i++) {
            for(j = 0; j < 4; j++) {
                keyCells[k][i][j]=keyCells_tmp[k][i][j];
            }
        }
    }
}


// Extract and apply the subtweakey to the internal state (must be the two top rows XORed together), then update the tweakey state (inverse function}
static void AddKey_inv(uint8_t state[4][4], uint8_t keyCells[3][4][4], int ver) {
	int i, j, k;
	uint8_t pos;
	uint8_t keyCells_tmp[3][4][4];

    // update the subtweakey states with the permutation
    for(k = 0; k <(int)(versions[ver][1]/versions[ver][0]); k++) {
        for(i = 0; i < 4; i++) {
            for(j = 0; j < 4; j++) {
                //application of the inverse TWEAKEY permutation
                pos=TWEAKEY_P_inv[j+4*i];
                keyCells_tmp[k][i][j]=keyCells[k][pos>>2][pos&0x3];
            }
        }
    }

    // update the subtweakey states with the LFSRs
    for(k = 0; k <(int)(versions[ver][1]/versions[ver][0]); k++) {
        for(i = 2; i <= 3; i++) {
            for(j = 0; j < 4; j++) {
                //application of inverse LFSRs for TK updates
                if (k==1) {
                    if (versions[ver][0]==64)
                        keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]>>1)&0x7)^((keyCells_tmp[k][i][j]<<3)&0x8)^((keyCells_tmp[k][i][j])&0x8);
                    else
                        keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]>>1)&0x7F)^((keyCells_tmp[k][i][j]<<7)&0x80)^((keyCells_tmp[k][i][j]<<1)&0x80);

                } else if (k==2) {
                    if (versions[ver][0]==64)
                        keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]<<1)&0xE)^((keyCells_tmp[k][i][j]>>3)&0x1)^((keyCells_tmp[k][i][j]>>2)&0x1);
                    else
                        keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]<<1)&0xFE)^((keyCells_tmp[k][i][j]>>7)&0x01)^((keyCells_tmp[k][i][j]>>5)&0x01);
                }
            }
        }
    }

    for(k = 0; k <(int)(versions[ver][1]/versions[ver][0]); k++) {
        for(i = 0; i < 4; i++) {
            for(j = 0; j < 4; j++) {
                keyCells[k][i][j]=keyCells_tmp[k][i][j];
            }
        }
    }


    // apply the subtweakey to the internal state
    for(i = 0; i <= 1; i++) {
        for(j = 0; j < 4; j++) {
            state[i][j] ^= keyCells[0][i][j];
            if (2*versions[ver][0]==versions[ver][1])
                state[i][j] ^= keyCells[1][i][j];
            else if (3*versions[ver][0]==versions[ver][1])
                state[i][j] ^= keyCells[1][i][j] ^ keyCells[2][i][j];
        }
    }
}


// Apply the constants: using a LFSR counter on 6 bits, we XOR the 6 bits to the first 6 bits of the internal state
void AddConstants(uint8_t state[4][4], int r) {
	state[0][0] ^= (RC[r] & 0xf);
	state[1][0] ^= ((RC[r]>>4) & 0x3);
	state[2][0] ^= 0x2;
}

// apply the 4-bit Sbox
static void SubCell4(uint8_t state[4][4]) {
	int i,j;
	for(i = 0; i < 4; i++) {
		for(j = 0; j < 4; j++) {
			state[i][j] = sbox_4[state[i][j]];
        }
    }
}

// apply the 4-bit inverse Sbox
static void SubCell4_inv(uint8_t state[4][4]) {
	int i,j;
	for(i = 0; i < 4; i++) {
		for(j = 0; j <  4; j++) {
			state[i][j] = sbox_4_inv[state[i][j]];
        }
    }
}

// apply the 8-bit Sbox
static void SubCell8(uint8_t state[4][4]) {
	int i,j;
	for(i = 0; i < 4; i++) {
		for(j = 0; j <  4; j++) {
			state[i][j] = sbox_8[state[i][j]];
        }
    }
}

// apply the 8-bit inverse Sbox
static void SubCell8_inv(uint8_t state[4][4]) {
	int i,j;
	for(i = 0; i < 4; i++) {
		for(j = 0; j <  4; j++) {
			state[i][j] = sbox_8_inv[state[i][j]];
        }
    }
}

// Apply the ShiftRows function
static void ShiftRows(uint8_t state[4][4]) {
	int i, j, pos;

	uint8_t state_tmp[4][4];
    for(i = 0; i < 4; i++) {
        for(j = 0; j < 4; j++) {
            //application of the ShiftRows permutation
            pos=P[j+4*i];
            state_tmp[i][j]=state[pos>>2][pos&0x3];
        }
    }

    for(i = 0; i < 4; i++) {
        for(j = 0; j < 4; j++) {
            state[i][j]=state_tmp[i][j];
        }
    }
}

// Apply the inverse ShiftRows function
static void ShiftRows_inv(uint8_t state[4][4]) {
	int i, j, pos;

	uint8_t state_tmp[4][4];
    for(i = 0; i < 4; i++) {
        for(j = 0; j < 4; j++) {
            //application of the inverse ShiftRows permutation
            pos=P_inv[j+4*i];
            state_tmp[i][j]=state[pos>>2][pos&0x3];
        }
    }

    for(i = 0; i < 4; i++) {
        for(j = 0; j < 4; j++) {
            state[i][j]=state_tmp[i][j];
        }
    }
}

// Apply the linear diffusion matrix
//M =
//1 0 1 1
//1 0 0 0
//0 1 1 0
//1 0 1 0
static void MixColumn(uint8_t state[4][4]) {
	int j;
    uint8_t temp;

	for(j = 0; j < 4; j++) {
        state[1][j]^=state[2][j];
        state[2][j]^=state[0][j];
        state[3][j]^=state[2][j];

        temp=state[3][j];
        state[3][j]=state[2][j];
        state[2][j]=state[1][j];
        state[1][j]=state[0][j];
        state[0][j]=temp;
	}
}

// Apply the inverse linear diffusion matrix
static void MixColumn_inv(uint8_t state[4][4]) {
	int j;
    uint8_t temp;

	for(j = 0; j < 4; j++) {
        temp=state[3][j];
        state[3][j]=state[0][j];
        state[0][j]=state[1][j];
        state[1][j]=state[2][j];
        state[2][j]=temp;

        state[3][j]^=state[2][j];
        state[2][j]^=state[0][j];
        state[1][j]^=state[2][j];
	}
}

// encryption function of Skinny
void dec(const uint8_t* input, const uint8_t* tweakey, uint8_t* output, const int ver) {

	uint8_t state[4][4];
	uint8_t dummy[4][4]={{0}};
	uint8_t keyCells[3][4][4];
	int i;

    /* Set state and keyCells */
    memset(keyCells, 0, 48);
	for(i = 0; i < 16; i++) {
        if (versions[ver][0]==64) {
            if(i&1) {
                state[i>>2][i&0x3] = input[i>>1]&0xF;

                keyCells[0][i>>2][i&0x3] = tweakey[i>>1]&0xF;
                if (versions[ver][1]>=128) keyCells[1][i>>2][i&0x3] = tweakey[(i+16)>>1]&0xF;
                if (versions[ver][1]>=192) keyCells[2][i>>2][i&0x3] = tweakey[(i+32)>>1]&0xF;

            } else {
                state[i>>2][i&0x3] = (input[i>>1]>>4)&0xF;

                keyCells[0][i>>2][i&0x3] = (tweakey[i>>1]>>4)&0xF;
                if (versions[ver][1]>=128) keyCells[1][i>>2][i&0x3] = (tweakey[(i+16)>>1]>>4)&0xF;
                if (versions[ver][1]>=192) keyCells[2][i>>2][i&0x3] = (tweakey[(i+32)>>1]>>4)&0xF;
            }

        } else if (versions[ver][0]==128) {
            state[i>>2][i&0x3] = input[i]&0xFF;

            keyCells[0][i>>2][i&0x3] = tweakey[i]&0xFF;
            if (versions[ver][1]>=256) keyCells[1][i>>2][i&0x3] = tweakey[i+16]&0xFF;
            if (versions[ver][1]>=384) keyCells[2][i>>2][i&0x3] = tweakey[i+32]&0xFF;
        }
    }

    for(i = versions[ver][2]-1; i >=0 ; i--) {
        AddKey(dummy, keyCells, ver);
    }

    #ifdef DEBUG
        fprintf(fic,"DEC - initial state:                     ");display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
    #endif

	for(i = versions[ver][2]-1; i >=0 ; i--) {
        MixColumn_inv(state);
            #ifdef DEBUG
            fprintf(fic,"DEC - round %.2i - after MixColumn_inv:    ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
        ShiftRows_inv(state);
            #ifdef DEBUG
            fprintf(fic,"DEC - round %.2i - after ShiftRows_inv:    ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
        AddKey_inv(state, keyCells, ver);
            #ifdef DEBUG
            fprintf(fic,"DEC - round %.2i - after AddKey_inv:       ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
        AddConstants(state, i);
            #ifdef DEBUG
            fprintf(fic,"DEC - round %.2i - after AddConstants_inv: ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
        if (versions[ver][0]==64)
            SubCell4_inv(state);
        else
            SubCell8_inv(state);
            #ifdef DEBUG
            fprintf(fic,"DEC - round %.2i - after SubCell_inv:      ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
	}

	#ifdef DEBUG
        fprintf(fic,"DEC - final state:                       ");display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
    #endif

    if (versions[ver][0]==64) {
        for(i = 0; i < 8; i++) {
            output[i] = ((state[(2*i)>>2][(2*i)&0x3] & 0xF) << 4) | (state[(2*i+1)>>2][(2*i+1)&0x3] & 0xF);
        }
    } else if (versions[ver][0]==128) {
        for(i = 0; i < 16; i++) {
            output[i] = state[i>>2][i&0x3] & 0xFF;
        }
    }
}


// encryption function of Skinny
void enc(const uint8_t* input, const uint8_t* tweakey, uint8_t* output, const int ver) {

	uint8_t state[4][4];
	uint8_t keyCells[3][4][4];
	int i;

    /* Set state and keyCells */
	memset(keyCells, 0, 48);
	for(i = 0; i < 16; i++) {
        if (versions[ver][0]==64) {
            if(i&1) {
                state[i>>2][i&0x3] = input[i>>1]&0xF;

                keyCells[0][i>>2][i&0x3] = tweakey[i>>1]&0xF;
                if (versions[ver][1]>=128) keyCells[1][i>>2][i&0x3] = tweakey[(i+16)>>1]&0xF;
                if (versions[ver][1]>=192) keyCells[2][i>>2][i&0x3] = tweakey[(i+32)>>1]&0xF;
            } else {
                state[i>>2][i&0x3] = (input[i>>1]>>4)&0xF;

                keyCells[0][i>>2][i&0x3] = (tweakey[i>>1]>>4)&0xF;
                if (versions[ver][1]>=128) keyCells[1][i>>2][i&0x3] = (tweakey[(i+16)>>1]>>4)&0xF;
                if (versions[ver][1]>=192) keyCells[2][i>>2][i&0x3] = (tweakey[(i+32)>>1]>>4)&0xF;
            }
        } else if (versions[ver][0]==128) {
            state[i>>2][i&0x3] = input[i]&0xFF;

            keyCells[0][i>>2][i&0x3] = tweakey[i]&0xFF;
            if (versions[ver][1]>=256) keyCells[1][i>>2][i&0x3] = tweakey[i+16]&0xFF;
            if (versions[ver][1]>=384) keyCells[2][i>>2][i&0x3] = tweakey[i+32]&0xFF;
        }
    }

    #ifdef DEBUG
        fprintf(fic,"ENC - initial state:                 ");display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
    #endif

	for(i = 0; i < versions[ver][2]; i++) {
        if (versions[ver][0]==64)
            SubCell4(state);
        else
            SubCell8(state);
            #ifdef DEBUG
            fprintf(fic,"ENC - round %.2i - after SubCell:      ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
        AddConstants(state, i);
            #ifdef DEBUG
            fprintf(fic,"ENC - round %.2i - after AddConstants: ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
        AddKey(state, keyCells, ver);
            #ifdef DEBUG
            fprintf(fic,"ENC - round %.2i - after AddKey:       ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
        ShiftRows(state);
            #ifdef DEBUG
            fprintf(fic,"ENC - round %.2i - after ShiftRows:    ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
        MixColumn(state);
            #ifdef DEBUG
            fprintf(fic,"ENC - round %.2i - after MixColumn:    ",i);display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
            #endif
	}  //The last subtweakey should not be added

	#ifdef DEBUG
        fprintf(fic,"ENC - final state:                   ");display_cipher_state(state,keyCells,ver);fprintf(fic,"\n");
    #endif

    if (versions[ver][0]==64) {
        for(i = 0; i < 8; i++) {
            output[i] = ((state[(2*i)>>2][(2*i)&0x3] & 0xF) << 4) | (state[(2*i+1)>>2][(2*i+1)&0x3] & 0xF);
        }

    } else if (versions[ver][0]==128) {
        for(i = 0; i < 16; i++) {
            output[i] = state[i>>2][i&0x3] & 0xFF;
        }
    }
}