skinny_reference.c 8.75 KB
Newer Older
Enrico Pozzobon committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Date: 11 December 2015
 * Contact: Thomas Peyrin - thomas.peyrin@gmail.com
 * Modified on 04 May 2021 by Mustafa Khairallah - Modified the code
 * to implement only the SKINNY-128-384+ encryption version of Skinny for
 * Romulus v1.3, the NIST LwC finalist.
 * mustafa.khairallah@ntu.edu.sg
 */

/* 
 * This file includes only the encryption function of SKINNY-128-384+ as required by Romulus-v1.3
 */


#include "skinny.h"

//#define DEBUG 1

#ifdef DEBUG
#include<stdio.h>
#include <time.h>
#include <string.h>
#endif

// Skinny-128-384+ parameters: 128-bit block, 384-bit tweakey and 40 rounds
int BLOCK_SIZE = 128;
int TWEAKEY_SIZE = 384;
int N_RNDS = 40;

// Packing of data is done as follows (state[i][j] stands for row i and column j):
// 0  1  2  3
// 4  5  6  7
// 8  9 10 11
//12 13 14 15

// 8-bit Sbox
const unsigned char sbox_8[256] = {0x65 , 0x4c , 0x6a , 0x42 , 0x4b , 0x63 , 0x43 , 0x6b , 0x55 , 0x75 , 0x5a , 0x7a , 0x53 , 0x73 , 0x5b , 0x7b ,0x35 , 0x8c , 0x3a , 0x81 , 0x89 , 0x33 , 0x80 , 0x3b , 0x95 , 0x25 , 0x98 , 0x2a , 0x90 , 0x23 , 0x99 , 0x2b ,0xe5 , 0xcc , 0xe8 , 0xc1 , 0xc9 , 0xe0 , 0xc0 , 0xe9 , 0xd5 , 0xf5 , 0xd8 , 0xf8 , 0xd0 , 0xf0 , 0xd9 , 0xf9 ,0xa5 , 0x1c , 0xa8 , 0x12 , 0x1b , 0xa0 , 0x13 , 0xa9 , 0x05 , 0xb5 , 0x0a , 0xb8 , 0x03 , 0xb0 , 0x0b , 0xb9 ,0x32 , 0x88 , 0x3c , 0x85 , 0x8d , 0x34 , 0x84 , 0x3d , 0x91 , 0x22 , 0x9c , 0x2c , 0x94 , 0x24 , 0x9d , 0x2d ,0x62 , 0x4a , 0x6c , 0x45 , 0x4d , 0x64 , 0x44 , 0x6d , 0x52 , 0x72 , 0x5c , 0x7c , 0x54 , 0x74 , 0x5d , 0x7d ,0xa1 , 0x1a , 0xac , 0x15 , 0x1d , 0xa4 , 0x14 , 0xad , 0x02 , 0xb1 , 0x0c , 0xbc , 0x04 , 0xb4 , 0x0d , 0xbd ,0xe1 , 0xc8 , 0xec , 0xc5 , 0xcd , 0xe4 , 0xc4 , 0xed , 0xd1 , 0xf1 , 0xdc , 0xfc , 0xd4 , 0xf4 , 0xdd , 0xfd ,0x36 , 0x8e , 0x38 , 0x82 , 0x8b , 0x30 , 0x83 , 0x39 , 0x96 , 0x26 , 0x9a , 0x28 , 0x93 , 0x20 , 0x9b , 0x29 ,0x66 , 0x4e , 0x68 , 0x41 , 0x49 , 0x60 , 0x40 , 0x69 , 0x56 , 0x76 , 0x58 , 0x78 , 0x50 , 0x70 , 0x59 , 0x79 ,0xa6 , 0x1e , 0xaa , 0x11 , 0x19 , 0xa3 , 0x10 , 0xab , 0x06 , 0xb6 , 0x08 , 0xba , 0x00 , 0xb3 , 0x09 , 0xbb ,0xe6 , 0xce , 0xea , 0xc2 , 0xcb , 0xe3 , 0xc3 , 0xeb , 0xd6 , 0xf6 , 0xda , 0xfa , 0xd3 , 0xf3 , 0xdb , 0xfb ,0x31 , 0x8a , 0x3e , 0x86 , 0x8f , 0x37 , 0x87 , 0x3f , 0x92 , 0x21 , 0x9e , 0x2e , 0x97 , 0x27 , 0x9f , 0x2f ,0x61 , 0x48 , 0x6e , 0x46 , 0x4f , 0x67 , 0x47 , 0x6f , 0x51 , 0x71 , 0x5e , 0x7e , 0x57 , 0x77 , 0x5f , 0x7f ,0xa2 , 0x18 , 0xae , 0x16 , 0x1f , 0xa7 , 0x17 , 0xaf , 0x01 , 0xb2 , 0x0e , 0xbe , 0x07 , 0xb7 , 0x0f , 0xbf ,0xe2 , 0xca , 0xee , 0xc6 , 0xcf ,0xe7 , 0xc7 , 0xef , 0xd2 , 0xf2 , 0xde , 0xfe , 0xd7 , 0xf7 , 0xdf , 0xff};

// ShiftAndSwitchRows permutation
const unsigned char P[16] = {0,1,2,3,7,4,5,6,10,11,8,9,13,14,15,12};

// Tweakey permutation
const unsigned char TWEAKEY_P[16] = {9,15,8,13,10,14,12,11,0,1,2,3,4,5,6,7};

// round constants
const unsigned char RC[40] = {
		0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3E, 0x3D, 0x3B, 0x37, 0x2F,
		0x1E, 0x3C, 0x39, 0x33, 0x27, 0x0E, 0x1D, 0x3A, 0x35, 0x2B,
		0x16, 0x2C, 0x18, 0x30, 0x21, 0x02, 0x05, 0x0B, 0x17, 0x2E,
		0x1C, 0x38, 0x31, 0x23, 0x06, 0x0D, 0x1B, 0x36, 0x2D, 0x1A};

#ifdef DEBUG
void display_matrix(unsigned char state[4][4])
{
    int i;
    unsigned char input[16];

    for(i = 0; i < 16; i++) input[i] = state[i>>2][i&0x3] & 0xFF;
    for(i = 0; i < 16; i++) printf("%02x", input[i]);

}

void display_cipher_state(unsigned char state[4][4], unsigned char keyCells[3][4][4])
{
    int k;

    printf("S = ");display_matrix(state);
    for(k = 0; k <(int)(TWEAKEY_SIZE/BLOCK_SIZE); k++)
    {
        printf(" - TK%i = ",k+1); display_matrix(keyCells[k]);
    }
}
#endif

// Extract and apply the subtweakey to the internal state (must be the two top rows XORed together), then update the tweakey state
void AddKey(unsigned char state[4][4], unsigned char keyCells[3][4][4])
{
	int i, j, k;
	unsigned char pos;
	unsigned char keyCells_tmp[3][4][4];

    // apply the subtweakey to the internal state
    for(i = 0; i <= 1; i++)
    {
        for(j = 0; j < 4; j++)
        {
            state[i][j] ^= keyCells[0][i][j] ^ keyCells[1][i][j] ^ keyCells[2][i][j];            
        }
    }

    // update the subtweakey states with the permutation
    for(k = 0; k <(int)(TWEAKEY_SIZE/BLOCK_SIZE); k++){
        for(i = 0; i < 4; i++){
            for(j = 0; j < 4; j++){
                //application of the TWEAKEY permutation
                pos=TWEAKEY_P[j+4*i];
                keyCells_tmp[k][i][j]=keyCells[k][pos>>2][pos&0x3];
            }
        }
    }

    // update the subtweakey states with the LFSRs
    for(k = 0; k <(int)(TWEAKEY_SIZE/BLOCK_SIZE); k++){
        for(i = 0; i <= 1; i++){
            for(j = 0; j < 4; j++){
                //application of LFSRs for TK updates
                if (k==1)
                {
		  			keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]<<1)&0xFE)^((keyCells_tmp[k][i][j]>>7)&0x01)^((keyCells_tmp[k][i][j]>>5)&0x01);
                }
                else if (k==2)
                {
		  			keyCells_tmp[k][i][j]=((keyCells_tmp[k][i][j]>>1)&0x7F)^((keyCells_tmp[k][i][j]<<7)&0x80)^((keyCells_tmp[k][i][j]<<1)&0x80);
                }
            }
        }
    }

    for(k = 0; k <(int)(TWEAKEY_SIZE/BLOCK_SIZE); k++){
        for(i = 0; i < 4; i++){
            for(j = 0; j < 4; j++){
                keyCells[k][i][j]=keyCells_tmp[k][i][j];
            }
        }
    }
}

// Apply the constants: using a LFSR counter on 6 bits, we XOR the 6 bits to the first 6 bits of the internal state
void AddConstants(unsigned char state[4][4], int r)
{
	state[0][0] ^= (RC[r] & 0xf);
	state[1][0] ^= ((RC[r]>>4) & 0x3);
	state[2][0] ^= 0x2;
}

// apply the 8-bit Sbox
void SubCell8(unsigned char state[4][4])
{
	int i,j;
	for(i = 0; i < 4; i++){
		for(j = 0; j <  4; j++){
			state[i][j] = sbox_8[state[i][j]];
		}
	}
}

// Apply the ShiftRows function
void ShiftRows(unsigned char state[4][4])
{
    unsigned char tmp;
    tmp = state[1][3];
    state[1][3] = state[1][2];
    state[1][2] = state[1][1];
    state[1][1] = state[1][0];
    state[1][0] = tmp;
 
    tmp = state[2][0];
    state[2][0] = state[2][2];
    state[2][2] = tmp;
    tmp = state[2][1];
    state[2][1] = state[2][3];
    state[2][3] = tmp;
 
    tmp = state[3][0];
    state[3][0] = state[3][1];
    state[3][1] = state[3][2];
    state[3][2] = state[3][3];
    state[3][3] = tmp;
}
// Apply the linear diffusion matrix
//M =
//1 0 1 1
//1 0 0 0
//0 1 1 0
//1 0 1 0
void MixColumn(unsigned char state[4][4])
{
	int j;
    unsigned char temp;

	for(j = 0; j < 4; j++){
        state[1][j]^=state[2][j];
        state[2][j]^=state[0][j];
        state[3][j]^=state[2][j];

        temp=state[3][j];
        state[3][j]=state[2][j];
        state[2][j]=state[1][j];
        state[1][j]=state[0][j];
        state[0][j]=temp;
	}
}

// encryption function of Skinny-128-384+
void enc(unsigned char* input, const unsigned char* userkey)
{
	unsigned char state[4][4];
	unsigned char keyCells[3][4][4];
	int i;
	
	//memset(keyCells, 0, 48);	
	for(i = 0; i < 16; i++) {
        state[i>>2][i&0x3] = input[i]&0xFF;
        keyCells[0][i>>2][i&0x3] = userkey[i]&0xFF;
	    keyCells[1][i>>2][i&0x3] = userkey[i+16]&0xFF;
	    keyCells[2][i>>2][i&0x3] = userkey[i+32]&0xFF;
	}

    #ifdef DEBUG
        printf("ENC - initial state:                 ");display_cipher_state(state,keyCells);printf("\n");
    #endif
	for(i = 0; i < N_RNDS; i++){
        SubCell8(state);
            #ifdef DEBUG
            printf("ENC - round %.2i - after SubCell:      ",i);display_cipher_state(state,keyCells);printf("\n");
            #endif
	    AddConstants(state, i);
            #ifdef DEBUG
            printf("ENC - round %.2i - after AddConstants: ",i);display_cipher_state(state,keyCells);printf("\n");
            #endif
	    AddKey(state, keyCells);
            #ifdef DEBUG
            printf("ENC - round %.2i - after AddKey:       ",i);display_cipher_state(state,keyCells);printf("\n");
            #endif
	    ShiftRows(state);
            #ifdef DEBUG
            printf("ENC - round %.2i - after ShiftRows:    ",i);display_cipher_state(state,keyCells);printf("\n");
            #endif
	    MixColumn(state);
            #ifdef DEBUG
            printf("ENC - round %.2i - after MixColumn:    ",i);display_cipher_state(state,keyCells);printf("\n");
            #endif
	}  //The last subtweakey should not be added

	#ifdef DEBUG
        printf("ENC - final state:                   ");display_cipher_state(state,keyCells);printf("\n");
    #endif
	
    for(i = 0; i < 16; i++)
		input[i] = state[i>>2][i&0x3] & 0xFF;
}

void skinny_128_384_plus_enc (unsigned char* input, const unsigned char* userkey) {
 	enc(input,userkey); 
}