internal-skinny128.c 33.1 KB
Newer Older
Rhys Weatherley committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright (C) 2020 Southern Storm Software, Pty Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "internal-skinny128.h"
#include "internal-skinnyutil.h"
#include "internal-util.h"
#include <string.h>

28 29
#if !defined(__AVR__)

Rhys Weatherley committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
STATIC_INLINE void skinny128_fast_forward_tk(uint32_t *tk)
{
    /* This function is used to fast-forward the TK1 tweak value
     * to the value at the end of the key schedule for decryption.
     *
     * The tweak permutation repeats every 16 rounds, so SKINNY-128-256
     * with 48 rounds does not need any fast forwarding applied.
     * SKINNY-128-128 with 40 rounds and SKINNY-128-384 with 56 rounds
     * are equivalent to applying the permutation 8 times:
     *
     * PT*8 = [5, 6, 3, 2, 7, 0, 1, 4, 13, 14, 11, 10, 15, 8, 9, 12]
     */
    uint32_t row0 = tk[0];
    uint32_t row1 = tk[1];
    uint32_t row2 = tk[2];
    uint32_t row3 = tk[3];
    tk[0] = ((row1 >>  8) & 0x0000FFFFU) |
            ((row0 >>  8) & 0x00FF0000U) |
            ((row0 <<  8) & 0xFF000000U);
    tk[1] = ((row1 >> 24) & 0x000000FFU) |
            ((row0 <<  8) & 0x00FFFF00U) |
            ((row1 << 24) & 0xFF000000U);
    tk[2] = ((row3 >>  8) & 0x0000FFFFU) |
            ((row2 >>  8) & 0x00FF0000U) |
            ((row2 <<  8) & 0xFF000000U);
    tk[3] = ((row3 >> 24) & 0x000000FFU) |
            ((row2 <<  8) & 0x00FFFF00U) |
            ((row3 << 24) & 0xFF000000U);
}

60 61
void skinny_128_384_init
    (skinny_128_384_key_schedule_t *ks, const unsigned char key[48])
Rhys Weatherley committed
62
{
63
#if !SKINNY_128_SMALL_SCHEDULE
Rhys Weatherley committed
64 65 66 67 68
    uint32_t TK2[4];
    uint32_t TK3[4];
    uint32_t *schedule;
    unsigned round;
    uint8_t rc;
69 70 71 72 73 74 75 76
#endif

#if SKINNY_128_SMALL_SCHEDULE
    /* Copy the input key as-is when using the small key schedule version */
    memcpy(ks->TK1, key, sizeof(ks->TK1));
    memcpy(ks->TK2, key + 16, sizeof(ks->TK2));
    memcpy(ks->TK3, key + 32, sizeof(ks->TK3));
#else
Rhys Weatherley committed
77
    /* Set the initial states of TK1, TK2, and TK3 */
78 79 80 81 82 83 84 85 86
    memcpy(ks->TK1, key, 16);
    TK2[0] = le_load_word32(key + 16);
    TK2[1] = le_load_word32(key + 20);
    TK2[2] = le_load_word32(key + 24);
    TK2[3] = le_load_word32(key + 28);
    TK3[0] = le_load_word32(key + 32);
    TK3[1] = le_load_word32(key + 36);
    TK3[2] = le_load_word32(key + 40);
    TK3[3] = le_load_word32(key + 44);
Rhys Weatherley committed
87 88 89 90 91 92

    /* Set up the key schedule using TK2 and TK3.  TK1 is not added
     * to the key schedule because we will derive that part of the
     * schedule during encryption operations */
    schedule = ks->k;
    rc = 0;
93
    for (round = 0; round < SKINNY_128_384_ROUNDS; round += 2, schedule += 4) {
Rhys Weatherley committed
94 95 96 97 98 99 100 101
        /* XOR the round constants with the current schedule words.
         * The round constants for the 3rd and 4th rows are
         * fixed and will be applied during encryption. */
        rc = (rc << 1) ^ ((rc >> 5) & 0x01) ^ ((rc >> 4) & 0x01) ^ 0x01;
        rc &= 0x3F;
        schedule[0] = TK2[0] ^ TK3[0] ^ (rc & 0x0F);
        schedule[1] = TK2[1] ^ TK3[1] ^ (rc >> 4);

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        /* Permute the bottom half of TK2 and TK3 for the next round */
        skinny128_permute_tk_half(TK2[2], TK2[3]);
        skinny128_permute_tk_half(TK3[2], TK3[3]);
        skinny128_LFSR2(TK2[2]);
        skinny128_LFSR2(TK2[3]);
        skinny128_LFSR3(TK3[2]);
        skinny128_LFSR3(TK3[3]);

        /* XOR the round constants with the current schedule words.
         * The round constants for the 3rd and 4th rows are
         * fixed and will be applied during encryption. */
        rc = (rc << 1) ^ ((rc >> 5) & 0x01) ^ ((rc >> 4) & 0x01) ^ 0x01;
        rc &= 0x3F;
        schedule[2] = TK2[2] ^ TK3[2] ^ (rc & 0x0F);
        schedule[3] = TK2[3] ^ TK3[3] ^ (rc >> 4);
Rhys Weatherley committed
117

118 119 120
        /* Permute the top half of TK2 and TK3 for the next round */
        skinny128_permute_tk_half(TK2[0], TK2[1]);
        skinny128_permute_tk_half(TK3[0], TK3[1]);
Rhys Weatherley committed
121 122 123 124 125
        skinny128_LFSR2(TK2[0]);
        skinny128_LFSR2(TK2[1]);
        skinny128_LFSR3(TK3[0]);
        skinny128_LFSR3(TK3[1]);
    }
126
#endif
Rhys Weatherley committed
127 128
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/**
 * \brief Performs an unrolled round for Skinny-128-384 when only TK1 is
 * computed on the fly.
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 * \param offset Offset between 0 and 3 of the current unrolled round.
 */
#define skinny_128_384_round(s0, s1, s2, s3, half, offset) \
    do { \
        /* Apply the S-box to all bytes in the state */ \
        skinny128_sbox(s0); \
        skinny128_sbox(s1); \
        skinny128_sbox(s2); \
        skinny128_sbox(s3); \
        \
        /* XOR the round constant and the subkey for this round */ \
        s0 ^= schedule[offset * 2]     ^ TK1[half * 2]; \
        s1 ^= schedule[offset * 2 + 1] ^ TK1[half * 2 + 1]; \
        s2 ^= 0x02; \
        \
        /* Shift the cells in the rows right, which moves the cell \
         * values up closer to the MSB.  That is, we do a left rotate \
         * on the word to rotate the cells in the word right */ \
        s1 = leftRotate8(s1); \
        s2 = leftRotate16(s2); \
        s3 = leftRotate24(s3); \
        \
        /* Mix the columns, but don't rotate the words yet */ \
        s1 ^= s2; \
        s2 ^= s0; \
        s3 ^= s2; \
        \
        /* Permute TK1 in-place for the next round */ \
        skinny128_permute_tk_half \
            (TK1[(1 - half) * 2], TK1[(1 - half) * 2 + 1]); \
    } while (0)

/**
 * \brief Performs an unrolled round for Skinny-128-384 when the entire
 * tweakey schedule is computed on the fly.
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 */
#define skinny_128_384_round_tk_full(s0, s1, s2, s3, half) \
    do { \
        /* Apply the S-box to all bytes in the state */ \
        skinny128_sbox(s0); \
        skinny128_sbox(s1); \
        skinny128_sbox(s2); \
        skinny128_sbox(s3); \
        \
        /* XOR the round constant and the subkey for this round */ \
        rc = (rc << 1) ^ ((rc >> 5) & 0x01) ^ ((rc >> 4) & 0x01) ^ 0x01; \
        rc &= 0x3F; \
        s0 ^= TK1[half * 2] ^ TK2[half * 2] ^ TK3[half * 2] ^ (rc & 0x0F); \
        s1 ^= TK1[half * 2 + 1] ^ TK2[half * 2 + 1] ^ TK3[half * 2 + 1] ^ \
              (rc >> 4); \
        s2 ^= 0x02; \
        \
        /* Shift the cells in the rows right, which moves the cell \
         * values up closer to the MSB.  That is, we do a left rotate \
         * on the word to rotate the cells in the word right */ \
        s1 = leftRotate8(s1); \
        s2 = leftRotate16(s2); \
        s3 = leftRotate24(s3); \
        \
        /* Mix the columns, but don't rotate the words yet */ \
        s1 ^= s2; \
        s2 ^= s0; \
        s3 ^= s2; \
        \
        /* Permute TK1, TK2, and TK3 in-place for the next round */ \
        skinny128_permute_tk_half \
            (TK1[(1 - half) * 2], TK1[(1 - half) * 2 + 1]); \
        skinny128_permute_tk_half \
            (TK2[(1 - half) * 2], TK2[(1 - half) * 2 + 1]); \
        skinny128_permute_tk_half \
            (TK3[(1 - half) * 2], TK3[(1 - half) * 2 + 1]); \
        skinny128_LFSR2(TK2[(1 - half) * 2]); \
        skinny128_LFSR2(TK2[(1 - half) * 2 + 1]); \
        skinny128_LFSR3(TK3[(1 - half) * 2]); \
        skinny128_LFSR3(TK3[(1 - half) * 2 + 1]); \
    } while (0)

Rhys Weatherley committed
221 222 223 224 225 226
void skinny_128_384_encrypt
    (const skinny_128_384_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t TK1[4];
227 228 229 230 231
#if SKINNY_128_SMALL_SCHEDULE
    uint32_t TK2[4];
    uint32_t TK3[4];
    uint8_t rc = 0;
#else
Rhys Weatherley committed
232
    const uint32_t *schedule = ks->k;
233
#endif
Rhys Weatherley committed
234 235 236 237 238 239 240 241
    unsigned round;

    /* Unpack the input block into the state array */
    s0 = le_load_word32(input);
    s1 = le_load_word32(input + 4);
    s2 = le_load_word32(input + 8);
    s3 = le_load_word32(input + 12);

242
    /* Make a local copy of the tweakable part of the state */
Rhys Weatherley committed
243 244 245 246
    TK1[0] = le_load_word32(ks->TK1);
    TK1[1] = le_load_word32(ks->TK1 + 4);
    TK1[2] = le_load_word32(ks->TK1 + 8);
    TK1[3] = le_load_word32(ks->TK1 + 12);
247 248 249 250 251 252 253 254 255 256
#if SKINNY_128_SMALL_SCHEDULE
    TK2[0] = le_load_word32(ks->TK2);
    TK2[1] = le_load_word32(ks->TK2 + 4);
    TK2[2] = le_load_word32(ks->TK2 + 8);
    TK2[3] = le_load_word32(ks->TK2 + 12);
    TK3[0] = le_load_word32(ks->TK3);
    TK3[1] = le_load_word32(ks->TK3 + 4);
    TK3[2] = le_load_word32(ks->TK3 + 8);
    TK3[3] = le_load_word32(ks->TK3 + 12);
#endif
Rhys Weatherley committed
257

258 259
    /* Perform all encryption rounds four at a time */
    for (round = 0; round < SKINNY_128_384_ROUNDS; round += 4) {
260
#if SKINNY_128_SMALL_SCHEDULE
261 262 263 264
        skinny_128_384_round_tk_full(s0, s1, s2, s3, 0);
        skinny_128_384_round_tk_full(s3, s0, s1, s2, 1);
        skinny_128_384_round_tk_full(s2, s3, s0, s1, 0);
        skinny_128_384_round_tk_full(s1, s2, s3, s0, 1);
265
#else
266 267 268 269 270
        skinny_128_384_round(s0, s1, s2, s3, 0, 0);
        skinny_128_384_round(s3, s0, s1, s2, 1, 1);
        skinny_128_384_round(s2, s3, s0, s1, 0, 2);
        skinny_128_384_round(s1, s2, s3, s0, 1, 3);
        schedule += 8;
271
#endif
Rhys Weatherley committed
272 273 274 275 276 277 278 279 280
    }

    /* Pack the result into the output buffer */
    le_store_word32(output,      s0);
    le_store_word32(output + 4,  s1);
    le_store_word32(output + 8,  s2);
    le_store_word32(output + 12, s3);
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/**
 * \brief Performs an unrolled inverse round for Skinny-128-384 when
 * only TK1 is computed on the fly.
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 * \param offset Offset between 0 and 3 of the current unrolled round.
 */
#define skinny_128_384_inv_round(s0, s1, s2, s3, half, offset) \
    do { \
        /* Inverse permutation on TK1 for this round */ \
        skinny128_inv_permute_tk_half \
            (TK1[(1 - half) * 2], TK1[(1 - half) * 2 + 1]); \
        \
        /* Inverse mix of the columns, without word rotation */ \
        s0 ^= s3; \
        s3 ^= s1; \
        s2 ^= s3; \
        \
        /* Inverse shift of the rows */ \
        s2 = leftRotate24(s2); \
        s3 = leftRotate16(s3); \
        s0 = leftRotate8(s0); \
        \
        /* Apply the subkey for this round */ \
        s1 ^= schedule[offset * 2]     ^ TK1[half * 2]; \
        s2 ^= schedule[offset * 2 + 1] ^ TK1[half * 2 + 1]; \
        s3 ^= 0x02; \
        \
        /* Apply the inverse of the S-box to all bytes in the state */ \
        skinny128_inv_sbox(s0); \
        skinny128_inv_sbox(s1); \
        skinny128_inv_sbox(s2); \
        skinny128_inv_sbox(s3); \
    } while (0)

/**
 * \brief Performs an unrolled inverse round for Skinny-128-384 when the
 * entire tweakey schedule is computed on the fly.
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 */
#define skinny_128_384_inv_round_tk_full(s0, s1, s2, s3, half) \
    do { \
        /* Inverse permutation on the tweakey for this round */ \
        skinny128_inv_permute_tk_half \
            (TK1[(1 - half) * 2], TK1[(1 - half) * 2 + 1]); \
        skinny128_inv_permute_tk_half \
            (TK2[(1 - half) * 2], TK2[(1 - half) * 2 + 1]); \
        skinny128_inv_permute_tk_half \
            (TK3[(1 - half) * 2], TK3[(1 - half) * 2 + 1]); \
        skinny128_LFSR3(TK2[(1 - half) * 2]); \
        skinny128_LFSR3(TK2[(1 - half) * 2 + 1]); \
        skinny128_LFSR2(TK3[(1 - half) * 2]); \
        skinny128_LFSR2(TK3[(1 - half) * 2 + 1]); \
        \
        /* Inverse mix of the columns, without word rotation */ \
        s0 ^= s3; \
        s3 ^= s1; \
        s2 ^= s3; \
        \
        /* Inverse shift of the rows */ \
        s2 = leftRotate24(s2); \
        s3 = leftRotate16(s3); \
        s0 = leftRotate8(s0); \
        \
        /* Apply the subkey for this round */ \
        rc = (rc >> 1) ^ (((rc << 5) ^ rc ^ 0x20) & 0x20); \
        s1 ^= TK1[half * 2] ^ TK2[half * 2] ^ TK3[half * 2] ^ (rc & 0x0F); \
        s2 ^= TK1[half * 2 + 1] ^ TK2[half * 2 + 1] ^ TK3[half * 2 + 1] ^ \
              (rc >> 4); \
        s3 ^= 0x02; \
        \
        /* Apply the inverse of the S-box to all bytes in the state */ \
        skinny128_inv_sbox(s0); \
        skinny128_inv_sbox(s1); \
        skinny128_inv_sbox(s2); \
        skinny128_inv_sbox(s3); \
    } while (0)

Rhys Weatherley committed
368 369 370 371 372 373
void skinny_128_384_decrypt
    (const skinny_128_384_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t TK1[4];
374 375 376 377 378
#if SKINNY_128_SMALL_SCHEDULE
    uint32_t TK2[4];
    uint32_t TK3[4];
    uint8_t rc = 0x15;
#else
379
    const uint32_t *schedule = &(ks->k[SKINNY_128_384_ROUNDS * 2 - 8]);
380
#endif
Rhys Weatherley committed
381 382 383 384 385 386 387 388 389 390 391 392 393
    unsigned round;

    /* Unpack the input block into the state array */
    s0 = le_load_word32(input);
    s1 = le_load_word32(input + 4);
    s2 = le_load_word32(input + 8);
    s3 = le_load_word32(input + 12);

    /* Make a local copy of the tweakable part of the state, TK1 */
    TK1[0] = le_load_word32(ks->TK1);
    TK1[1] = le_load_word32(ks->TK1 + 4);
    TK1[2] = le_load_word32(ks->TK1 + 8);
    TK1[3] = le_load_word32(ks->TK1 + 12);
394 395 396 397 398 399 400 401 402 403
#if SKINNY_128_SMALL_SCHEDULE
    TK2[0] = le_load_word32(ks->TK2);
    TK2[1] = le_load_word32(ks->TK2 + 4);
    TK2[2] = le_load_word32(ks->TK2 + 8);
    TK2[3] = le_load_word32(ks->TK2 + 12);
    TK3[0] = le_load_word32(ks->TK3);
    TK3[1] = le_load_word32(ks->TK3 + 4);
    TK3[2] = le_load_word32(ks->TK3 + 8);
    TK3[3] = le_load_word32(ks->TK3 + 12);
#endif
Rhys Weatherley committed
404 405 406

    /* Permute TK1 to fast-forward it to the end of the key schedule */
    skinny128_fast_forward_tk(TK1);
407 408 409 410
#if SKINNY_128_SMALL_SCHEDULE
    skinny128_fast_forward_tk(TK2);
    skinny128_fast_forward_tk(TK3);
    for (round = 0; round < SKINNY_128_384_ROUNDS; round += 2) {
411
        /* Also fast-forward the LFSR's on every byte of TK2 and TK3 */
412 413 414 415 416 417 418 419 420 421
        skinny128_LFSR2(TK2[0]);
        skinny128_LFSR2(TK2[1]);
        skinny128_LFSR2(TK2[2]);
        skinny128_LFSR2(TK2[3]);
        skinny128_LFSR3(TK3[0]);
        skinny128_LFSR3(TK3[1]);
        skinny128_LFSR3(TK3[2]);
        skinny128_LFSR3(TK3[3]);
    }
#endif
Rhys Weatherley committed
422

423 424
    /* Perform all decryption rounds four at a time */
    for (round = 0; round < SKINNY_128_384_ROUNDS; round += 4) {
425
#if SKINNY_128_SMALL_SCHEDULE
426 427 428 429
        skinny_128_384_inv_round_tk_full(s0, s1, s2, s3, 1);
        skinny_128_384_inv_round_tk_full(s1, s2, s3, s0, 0);
        skinny_128_384_inv_round_tk_full(s2, s3, s0, s1, 1);
        skinny_128_384_inv_round_tk_full(s3, s0, s1, s2, 0);
430
#else
431 432 433 434 435
        skinny_128_384_inv_round(s0, s1, s2, s3, 1, 3);
        skinny_128_384_inv_round(s1, s2, s3, s0, 0, 2);
        skinny_128_384_inv_round(s2, s3, s0, s1, 1, 1);
        skinny_128_384_inv_round(s3, s0, s1, s2, 0, 0);
        schedule -= 8;
436
#endif
Rhys Weatherley committed
437 438 439 440 441 442 443 444 445
    }

    /* Pack the result into the output buffer */
    le_store_word32(output,      s0);
    le_store_word32(output + 4,  s1);
    le_store_word32(output + 8,  s2);
    le_store_word32(output + 12, s3);
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
/**
 * \def skinny_128_384_round_tk2(s0, s1, s2, s3, half)
 * \brief Performs an unrolled round for skinny_128_384_encrypt_tk2().
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 * \param offset Offset between 0 and 3 of the current unrolled round.
 */
#if SKINNY_128_SMALL_SCHEDULE
#define skinny_128_384_round_tk2(s0, s1, s2, s3, half, offset) \
    skinny_128_384_round_tk_full(s0, s1, s2, s3, half)
#else /* !SKINNY_128_SMALL_SCHEDULE */
#define skinny_128_384_round_tk2(s0, s1, s2, s3, half, offset) \
    do { \
        /* Apply the S-box to all bytes in the state */ \
        skinny128_sbox(s0); \
        skinny128_sbox(s1); \
        skinny128_sbox(s2); \
        skinny128_sbox(s3); \
        \
        /* XOR the round constant and the subkey for this round */ \
        s0 ^= schedule[offset * 2] ^ TK1[half * 2] ^ TK2[half * 2]; \
        s1 ^= schedule[offset * 2 + 1] ^ TK1[half * 2 + 1] ^ \
              TK2[half * 2 + 1]; \
        s2 ^= 0x02; \
        \
        /* Shift the cells in the rows right, which moves the cell \
         * values up closer to the MSB.  That is, we do a left rotate \
         * on the word to rotate the cells in the word right */ \
        s1 = leftRotate8(s1); \
        s2 = leftRotate16(s2); \
        s3 = leftRotate24(s3); \
        \
        /* Mix the columns, but don't rotate the words yet */ \
        s1 ^= s2; \
        s2 ^= s0; \
        s3 ^= s2; \
        \
        /* Permute TK1 and TK2 in-place for the next round */ \
        skinny128_permute_tk_half \
            (TK1[(1 - half) * 2], TK1[(1 - half) * 2 + 1]); \
        skinny128_permute_tk_half \
            (TK2[(1 - half) * 2], TK2[(1 - half) * 2 + 1]); \
        skinny128_LFSR2(TK2[(1 - half) * 2]); \
        skinny128_LFSR2(TK2[(1 - half) * 2 + 1]); \
    } while (0)
#endif /* !SKINNY_128_SMALL_SCHEDULE */

Rhys Weatherley committed
497
void skinny_128_384_encrypt_tk2
498
    (skinny_128_384_key_schedule_t *ks, unsigned char *output,
Rhys Weatherley committed
499 500 501 502 503
     const unsigned char *input, const unsigned char *tk2)
{
    uint32_t s0, s1, s2, s3;
    uint32_t TK1[4];
    uint32_t TK2[4];
504 505 506 507
#if SKINNY_128_SMALL_SCHEDULE
    uint32_t TK3[4];
    uint8_t rc = 0;
#else
Rhys Weatherley committed
508
    const uint32_t *schedule = ks->k;
509
#endif
Rhys Weatherley committed
510 511 512 513 514 515 516 517
    unsigned round;

    /* Unpack the input block into the state array */
    s0 = le_load_word32(input);
    s1 = le_load_word32(input + 4);
    s2 = le_load_word32(input + 8);
    s3 = le_load_word32(input + 12);

518
    /* Make a local copy of the tweakable part of the state */
Rhys Weatherley committed
519 520 521 522 523 524 525 526
    TK1[0] = le_load_word32(ks->TK1);
    TK1[1] = le_load_word32(ks->TK1 + 4);
    TK1[2] = le_load_word32(ks->TK1 + 8);
    TK1[3] = le_load_word32(ks->TK1 + 12);
    TK2[0] = le_load_word32(tk2);
    TK2[1] = le_load_word32(tk2 + 4);
    TK2[2] = le_load_word32(tk2 + 8);
    TK2[3] = le_load_word32(tk2 + 12);
527 528 529 530 531 532
#if SKINNY_128_SMALL_SCHEDULE
    TK3[0] = le_load_word32(ks->TK3);
    TK3[1] = le_load_word32(ks->TK3 + 4);
    TK3[2] = le_load_word32(ks->TK3 + 8);
    TK3[3] = le_load_word32(ks->TK3 + 12);
#endif
Rhys Weatherley committed
533

534 535 536 537 538 539 540 541
    /* Perform all encryption rounds four at a time */
    for (round = 0; round < SKINNY_128_384_ROUNDS; round += 4) {
        skinny_128_384_round_tk2(s0, s1, s2, s3, 0, 0);
        skinny_128_384_round_tk2(s3, s0, s1, s2, 1, 1);
        skinny_128_384_round_tk2(s2, s3, s0, s1, 0, 2);
        skinny_128_384_round_tk2(s1, s2, s3, s0, 1, 3);
#if !SKINNY_128_SMALL_SCHEDULE
        schedule += 8;
542
#endif
Rhys Weatherley committed
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
    }

    /* Pack the result into the output buffer */
    le_store_word32(output,      s0);
    le_store_word32(output + 4,  s1);
    le_store_word32(output + 8,  s2);
    le_store_word32(output + 12, s3);
}

void skinny_128_384_encrypt_tk_full
    (const unsigned char key[48], unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t TK1[4];
    uint32_t TK2[4];
    uint32_t TK3[4];
    unsigned round;
    uint8_t rc = 0;

    /* Unpack the input block into the state array */
    s0 = le_load_word32(input);
    s1 = le_load_word32(input + 4);
    s2 = le_load_word32(input + 8);
    s3 = le_load_word32(input + 12);

    /* Make a local copy of the tweakey */
    TK1[0] = le_load_word32(key);
    TK1[1] = le_load_word32(key + 4);
    TK1[2] = le_load_word32(key + 8);
    TK1[3] = le_load_word32(key + 12);
    TK2[0] = le_load_word32(key + 16);
    TK2[1] = le_load_word32(key + 20);
    TK2[2] = le_load_word32(key + 24);
    TK2[3] = le_load_word32(key + 28);
    TK3[0] = le_load_word32(key + 32);
    TK3[1] = le_load_word32(key + 36);
    TK3[2] = le_load_word32(key + 40);
    TK3[3] = le_load_word32(key + 44);

583 584 585 586 587 588
    /* Perform all encryption rounds four at a time */
    for (round = 0; round < SKINNY_128_384_ROUNDS; round += 4) {
        skinny_128_384_round_tk_full(s0, s1, s2, s3, 0);
        skinny_128_384_round_tk_full(s3, s0, s1, s2, 1);
        skinny_128_384_round_tk_full(s2, s3, s0, s1, 0);
        skinny_128_384_round_tk_full(s1, s2, s3, s0, 1);
Rhys Weatherley committed
589 590 591 592 593 594 595 596 597
    }

    /* Pack the result into the output buffer */
    le_store_word32(output,      s0);
    le_store_word32(output + 4,  s1);
    le_store_word32(output + 8,  s2);
    le_store_word32(output + 12, s3);
}

598 599
void skinny_128_256_init
    (skinny_128_256_key_schedule_t *ks, const unsigned char key[32])
Rhys Weatherley committed
600
{
601
#if !SKINNY_128_SMALL_SCHEDULE
Rhys Weatherley committed
602 603 604 605
    uint32_t TK2[4];
    uint32_t *schedule;
    unsigned round;
    uint8_t rc;
606
#endif
Rhys Weatherley committed
607

608 609 610 611 612
#if SKINNY_128_SMALL_SCHEDULE
    /* Copy the input key as-is when using the small key schedule version */
    memcpy(ks->TK1, key, sizeof(ks->TK1));
    memcpy(ks->TK2, key + 16, sizeof(ks->TK2));
#else
Rhys Weatherley committed
613
    /* Set the initial states of TK1 and TK2 */
614 615 616 617 618
    memcpy(ks->TK1, key, 16);
    TK2[0] = le_load_word32(key + 16);
    TK2[1] = le_load_word32(key + 20);
    TK2[2] = le_load_word32(key + 24);
    TK2[3] = le_load_word32(key + 28);
Rhys Weatherley committed
619 620 621 622 623 624

    /* Set up the key schedule using TK2.  TK1 is not added
     * to the key schedule because we will derive that part of the
     * schedule during encryption operations */
    schedule = ks->k;
    rc = 0;
625
    for (round = 0; round < SKINNY_128_256_ROUNDS; round += 2, schedule += 4) {
Rhys Weatherley committed
626 627 628 629 630 631 632 633
        /* XOR the round constants with the current schedule words.
         * The round constants for the 3rd and 4th rows are
         * fixed and will be applied during encryption. */
        rc = (rc << 1) ^ ((rc >> 5) & 0x01) ^ ((rc >> 4) & 0x01) ^ 0x01;
        rc &= 0x3F;
        schedule[0] = TK2[0] ^ (rc & 0x0F);
        schedule[1] = TK2[1] ^ (rc >> 4);

634 635 636 637 638 639 640 641 642 643 644 645
        /* Permute the bottom half of TK2 for the next round */
        skinny128_permute_tk_half(TK2[2], TK2[3]);
        skinny128_LFSR2(TK2[2]);
        skinny128_LFSR2(TK2[3]);

        /* XOR the round constants with the current schedule words.
         * The round constants for the 3rd and 4th rows are
         * fixed and will be applied during encryption. */
        rc = (rc << 1) ^ ((rc >> 5) & 0x01) ^ ((rc >> 4) & 0x01) ^ 0x01;
        rc &= 0x3F;
        schedule[2] = TK2[2] ^ (rc & 0x0F);
        schedule[3] = TK2[3] ^ (rc >> 4);
Rhys Weatherley committed
646

647 648
        /* Permute the top half of TK2 for the next round */
        skinny128_permute_tk_half(TK2[0], TK2[1]);
Rhys Weatherley committed
649 650 651
        skinny128_LFSR2(TK2[0]);
        skinny128_LFSR2(TK2[1]);
    }
652
#endif
Rhys Weatherley committed
653 654
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/**
 * \brief Performs an unrolled round for Skinny-128-256 when only TK1 is
 * computed on the fly.
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 * \param offset Offset between 0 and 3 of the current unrolled round.
 */
#define skinny_128_256_round(s0, s1, s2, s3, half, offset) \
    skinny_128_384_round(s0, s1, s2, s3, half, offset)

/**
 * \brief Performs an unrolled round for Skinny-128-256 when the entire
 * tweakey schedule is computed on the fly.
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 */
#define skinny_128_256_round_tk_full(s0, s1, s2, s3, half) \
    do { \
        /* Apply the S-box to all bytes in the state */ \
        skinny128_sbox(s0); \
        skinny128_sbox(s1); \
        skinny128_sbox(s2); \
        skinny128_sbox(s3); \
        \
        /* XOR the round constant and the subkey for this round */ \
        rc = (rc << 1) ^ ((rc >> 5) & 0x01) ^ ((rc >> 4) & 0x01) ^ 0x01; \
        rc &= 0x3F; \
        s0 ^= TK1[half * 2] ^ TK2[half * 2] ^ (rc & 0x0F); \
        s1 ^= TK1[half * 2 + 1] ^ TK2[half * 2 + 1] ^ (rc >> 4); \
        s2 ^= 0x02; \
        \
        /* Shift the cells in the rows right, which moves the cell \
         * values up closer to the MSB.  That is, we do a left rotate \
         * on the word to rotate the cells in the word right */ \
        s1 = leftRotate8(s1); \
        s2 = leftRotate16(s2); \
        s3 = leftRotate24(s3); \
        \
        /* Mix the columns, but don't rotate the words yet */ \
        s1 ^= s2; \
        s2 ^= s0; \
        s3 ^= s2; \
        \
        /* Permute TK1, TK2, and TK3 in-place for the next round */ \
        skinny128_permute_tk_half \
            (TK1[(1 - half) * 2], TK1[(1 - half) * 2 + 1]); \
        skinny128_permute_tk_half \
            (TK2[(1 - half) * 2], TK2[(1 - half) * 2 + 1]); \
        skinny128_LFSR2(TK2[(1 - half) * 2]); \
        skinny128_LFSR2(TK2[(1 - half) * 2 + 1]); \
    } while (0)

Rhys Weatherley committed
715 716 717 718 719 720
void skinny_128_256_encrypt
    (const skinny_128_256_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t TK1[4];
721 722 723 724
#if SKINNY_128_SMALL_SCHEDULE
    uint32_t TK2[4];
    uint8_t rc = 0;
#else
Rhys Weatherley committed
725
    const uint32_t *schedule = ks->k;
726
#endif
Rhys Weatherley committed
727 728 729 730 731 732 733 734 735 736 737 738 739
    unsigned round;

    /* Unpack the input block into the state array */
    s0 = le_load_word32(input);
    s1 = le_load_word32(input + 4);
    s2 = le_load_word32(input + 8);
    s3 = le_load_word32(input + 12);

    /* Make a local copy of the tweakable part of the state, TK1 */
    TK1[0] = le_load_word32(ks->TK1);
    TK1[1] = le_load_word32(ks->TK1 + 4);
    TK1[2] = le_load_word32(ks->TK1 + 8);
    TK1[3] = le_load_word32(ks->TK1 + 12);
740 741 742 743 744 745
#if SKINNY_128_SMALL_SCHEDULE
    TK2[0] = le_load_word32(ks->TK2);
    TK2[1] = le_load_word32(ks->TK2 + 4);
    TK2[2] = le_load_word32(ks->TK2 + 8);
    TK2[3] = le_load_word32(ks->TK2 + 12);
#endif
Rhys Weatherley committed
746

747 748
    /* Perform all encryption rounds four at a time */
    for (round = 0; round < SKINNY_128_256_ROUNDS; round += 4) {
749
#if SKINNY_128_SMALL_SCHEDULE
750 751 752 753
        skinny_128_256_round_tk_full(s0, s1, s2, s3, 0);
        skinny_128_256_round_tk_full(s3, s0, s1, s2, 1);
        skinny_128_256_round_tk_full(s2, s3, s0, s1, 0);
        skinny_128_256_round_tk_full(s1, s2, s3, s0, 1);
754
#else
755 756 757 758 759
        skinny_128_256_round(s0, s1, s2, s3, 0, 0);
        skinny_128_256_round(s3, s0, s1, s2, 1, 1);
        skinny_128_256_round(s2, s3, s0, s1, 0, 2);
        skinny_128_256_round(s1, s2, s3, s0, 1, 3);
        schedule += 8;
760
#endif
Rhys Weatherley committed
761 762 763 764 765 766 767 768 769
    }

    /* Pack the result into the output buffer */
    le_store_word32(output,      s0);
    le_store_word32(output + 4,  s1);
    le_store_word32(output + 8,  s2);
    le_store_word32(output + 12, s3);
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/**
 * \brief Performs an unrolled inverse round for Skinny-128-256 when
 * only TK1 is computed on the fly.
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 * \param offset Offset between 0 and 3 of the current unrolled round.
 */
#define skinny_128_256_inv_round(s0, s1, s2, s3, half, offset) \
    skinny_128_384_inv_round(s0, s1, s2, s3, half, offset)

/**
 * \brief Performs an unrolled inverse round for Skinny-128-256 when the
 * entire tweakey schedule is computed on the fly.
 *
 * \param s0 First word of the state.
 * \param s1 Second word of the state.
 * \param s2 Third word of the state.
 * \param s3 Fourth word of the state.
 * \param half 0 for the bottom half and 1 for the top half of the TK values.
 */
#define skinny_128_256_inv_round_tk_full(s0, s1, s2, s3, half) \
    do { \
        /* Inverse permutation on the tweakey for this round */ \
        skinny128_inv_permute_tk_half \
            (TK1[(1 - half) * 2], TK1[(1 - half) * 2 + 1]); \
        skinny128_inv_permute_tk_half \
            (TK2[(1 - half) * 2], TK2[(1 - half) * 2 + 1]); \
        skinny128_LFSR3(TK2[(1 - half) * 2]); \
        skinny128_LFSR3(TK2[(1 - half) * 2 + 1]); \
        \
        /* Inverse mix of the columns, without word rotation */ \
        s0 ^= s3; \
        s3 ^= s1; \
        s2 ^= s3; \
        \
        /* Inverse shift of the rows */ \
        s2 = leftRotate24(s2); \
        s3 = leftRotate16(s3); \
        s0 = leftRotate8(s0); \
        \
        /* Apply the subkey for this round */ \
        rc = (rc >> 1) ^ (((rc << 5) ^ rc ^ 0x20) & 0x20); \
        s1 ^= TK1[half * 2] ^ TK2[half * 2] ^ (rc & 0x0F); \
        s2 ^= TK1[half * 2 + 1] ^ TK2[half * 2 + 1] ^ (rc >> 4); \
        s3 ^= 0x02; \
        \
        /* Apply the inverse of the S-box to all bytes in the state */ \
        skinny128_inv_sbox(s0); \
        skinny128_inv_sbox(s1); \
        skinny128_inv_sbox(s2); \
        skinny128_inv_sbox(s3); \
    } while (0)

Rhys Weatherley committed
827 828 829 830 831 832
void skinny_128_256_decrypt
    (const skinny_128_256_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t TK1[4];
833 834 835 836
#if SKINNY_128_SMALL_SCHEDULE
    uint32_t TK2[4];
    uint8_t rc = 0x09;
#else
837
    const uint32_t *schedule = &(ks->k[SKINNY_128_256_ROUNDS * 2 - 8]);
838
#endif
Rhys Weatherley committed
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
    unsigned round;

    /* Unpack the input block into the state array */
    s0 = le_load_word32(input);
    s1 = le_load_word32(input + 4);
    s2 = le_load_word32(input + 8);
    s3 = le_load_word32(input + 12);

    /* Make a local copy of the tweakable part of the state, TK1.
     * There is no need to fast-forward TK1 because the value at
     * the end of the key schedule is the same as at the start */
    TK1[0] = le_load_word32(ks->TK1);
    TK1[1] = le_load_word32(ks->TK1 + 4);
    TK1[2] = le_load_word32(ks->TK1 + 8);
    TK1[3] = le_load_word32(ks->TK1 + 12);
854 855 856 857 858 859
#if SKINNY_128_SMALL_SCHEDULE
    TK2[0] = le_load_word32(ks->TK2);
    TK2[1] = le_load_word32(ks->TK2 + 4);
    TK2[2] = le_load_word32(ks->TK2 + 8);
    TK2[3] = le_load_word32(ks->TK2 + 12);
    for (round = 0; round < SKINNY_128_256_ROUNDS; round += 2) {
860
        /* Also fast-forward the LFSR's on every byte of TK2 */
861 862 863 864 865 866
        skinny128_LFSR2(TK2[0]);
        skinny128_LFSR2(TK2[1]);
        skinny128_LFSR2(TK2[2]);
        skinny128_LFSR2(TK2[3]);
    }
#endif
Rhys Weatherley committed
867

868 869
    /* Perform all decryption rounds four at a time */
    for (round = 0; round < SKINNY_128_256_ROUNDS; round += 4) {
870
#if SKINNY_128_SMALL_SCHEDULE
871 872 873 874
        skinny_128_256_inv_round_tk_full(s0, s1, s2, s3, 1);
        skinny_128_256_inv_round_tk_full(s1, s2, s3, s0, 0);
        skinny_128_256_inv_round_tk_full(s2, s3, s0, s1, 1);
        skinny_128_256_inv_round_tk_full(s3, s0, s1, s2, 0);
875
#else
876 877 878 879 880
        skinny_128_256_inv_round(s0, s1, s2, s3, 1, 3);
        skinny_128_256_inv_round(s1, s2, s3, s0, 0, 2);
        skinny_128_256_inv_round(s2, s3, s0, s1, 1, 1);
        skinny_128_256_inv_round(s3, s0, s1, s2, 0, 0);
        schedule -= 8;
881
#endif
Rhys Weatherley committed
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
    }

    /* Pack the result into the output buffer */
    le_store_word32(output,      s0);
    le_store_word32(output + 4,  s1);
    le_store_word32(output + 8,  s2);
    le_store_word32(output + 12, s3);
}

void skinny_128_256_encrypt_tk_full
    (const unsigned char key[32], unsigned char *output,
     const unsigned char *input)
{
    uint32_t s0, s1, s2, s3;
    uint32_t TK1[4];
    uint32_t TK2[4];
    unsigned round;
    uint8_t rc = 0;

    /* Unpack the input block into the state array */
    s0 = le_load_word32(input);
    s1 = le_load_word32(input + 4);
    s2 = le_load_word32(input + 8);
    s3 = le_load_word32(input + 12);

    /* Make a local copy of the tweakey */
    TK1[0] = le_load_word32(key);
    TK1[1] = le_load_word32(key + 4);
    TK1[2] = le_load_word32(key + 8);
    TK1[3] = le_load_word32(key + 12);
    TK2[0] = le_load_word32(key + 16);
    TK2[1] = le_load_word32(key + 20);
    TK2[2] = le_load_word32(key + 24);
    TK2[3] = le_load_word32(key + 28);

917 918 919 920 921 922
    /* Perform all encryption rounds four at a time */
    for (round = 0; round < SKINNY_128_256_ROUNDS; round += 4) {
        skinny_128_256_round_tk_full(s0, s1, s2, s3, 0);
        skinny_128_256_round_tk_full(s3, s0, s1, s2, 1);
        skinny_128_256_round_tk_full(s2, s3, s0, s1, 0);
        skinny_128_256_round_tk_full(s1, s2, s3, s0, 1);
Rhys Weatherley committed
923 924 925 926 927 928 929 930 931
    }

    /* Pack the result into the output buffer */
    le_store_word32(output,      s0);
    le_store_word32(output + 4,  s1);
    le_store_word32(output + 8,  s2);
    le_store_word32(output + 12, s3);
}

932
#else /* __AVR__ */
Rhys Weatherley committed
933

934 935 936
void skinny_128_384_encrypt_tk2
    (skinny_128_384_key_schedule_t *ks, unsigned char *output,
     const unsigned char *input, const unsigned char *tk2)
Rhys Weatherley committed
937
{
938 939
    memcpy(ks->TK2, tk2, 16);
    skinny_128_384_encrypt(ks, output, input);
Rhys Weatherley committed
940 941
}

942
#endif /* __AVR__ */