sparkle_opt.c 5.42 KB
Newer Older
Johann Großschädl committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
///////////////////////////////////////////////////////////////////////////////
// sparkle_opt.c: Optimized C99 implementation of the SPARKLE permutation.   //
// This file is part of the SPARKLE submission to NIST's LW Crypto Project.  //
// Version 1.1.2 (2020-10-30), see <http://www.cryptolux.org/> for updates.  //
// Authors: The SPARKLE Group (C. Beierle, A. Biryukov, L. Cardoso dos       //
// Santos, J. Groszschaedl, L. Perrin, A. Udovenko, V. Velichkov, Q. Wang).  //
// License: GPLv3 (see LICENSE file), other licenses available upon request. //
// Copyright (C) 2019-2020 University of Luxembourg <http://www.uni.lu/>.    //
// ------------------------------------------------------------------------- //
// This program is free software: you can redistribute it and/or modify it   //
// under the terms of the GNU General Public License as published by the     //
// Free Software Foundation, either version 3 of the License, or (at your    //
// option) any later version. This program is distributed in the hope that   //
// it will be useful, but WITHOUT ANY WARRANTY; without even the implied     //
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  //
// GNU General Public License for more details. You should have received a   //
// copy of the GNU General Public License along with this program. If not,   //
// see <http://www.gnu.org/licenses/>.                                       //
///////////////////////////////////////////////////////////////////////////////


#include <stdio.h>
#include "sparkle_opt.h"


#define ROT(x, n) (((x) >> (n)) | ((x) << (32-(n))))
#define ELL(x) (ROT(((x) ^ ((x) << 16)), 16))


// Round constants
static const uint32_t RCON[MAX_BRANCHES] = {      \
  0xB7E15162, 0xBF715880, 0x38B4DA56, 0x324E7738, \
  0xBB1185EB, 0x4F7C7B57, 0xCFBFA1C8, 0xC2B3293D  \
};


void sparkle_opt(uint32_t *state, int brans, int steps)
{
  int i, j;  // Step and branch counter
  uint32_t rc, tmpx, tmpy, x0, y0;
  
  for(i = 0; i < steps; i ++) {
    // Add round constant
    state[1] ^= RCON[i%MAX_BRANCHES];
    state[3] ^= i;
    // ARXBOX layer
    for(j = 0; j < 2*brans; j += 2) {
      rc = RCON[j>>1];
      state[j] += ROT(state[j+1], 31);
      state[j+1] ^= ROT(state[j], 24);
      state[j] ^= rc;
      state[j] += ROT(state[j+1], 17);
      state[j+1] ^= ROT(state[j], 17);
      state[j] ^= rc;
      state[j] += state[j+1];
      state[j+1] ^= ROT(state[j], 31);
      state[j] ^= rc;
      state[j] += ROT(state[j+1], 24);
      state[j+1] ^= ROT(state[j], 16);
      state[j] ^= rc;
    }
    // Linear layer
    tmpx = x0 = state[0];
    tmpy = y0 = state[1];
    for(j = 2; j < brans; j += 2) {
      tmpx ^= state[j];
      tmpy ^= state[j+1];
    }
    tmpx = ELL(tmpx);
    tmpy = ELL(tmpy);
    for (j = 2; j < brans; j += 2) {
      state[j-2] = state[j+brans] ^ state[j] ^ tmpy;
      state[j+brans] = state[j];
      state[j-1] = state[j+brans+1] ^ state[j+1] ^ tmpx;
      state[j+brans+1] = state[j+1];
    }
    state[brans-2] = state[brans] ^ x0 ^ tmpy;
    state[brans] = x0;
    state[brans-1] = state[brans+1] ^ y0 ^ tmpx;
    state[brans+1] = y0;
  }
}


void sparkle_inv_opt(uint32_t *state, int brans, int steps)
{
  int i, j;  // Step and branch counter
  uint32_t rc, tmpx, tmpy, xb1, yb1;
  
  for(i = steps-1; i >= 0; i --) {
    // Linear layer
    tmpx = tmpy = 0;
    xb1 = state[brans-2];
    yb1 = state[brans-1];
    for (j = brans-2; j > 0; j -= 2) {
      tmpx ^= (state[j] = state[j+brans]);
      state[j+brans] = state[j-2];
      tmpy ^= (state[j+1] = state[j+brans+1]);
      state[j+brans+1] = state[j-1];
    }
    tmpx ^= (state[0] = state[brans]);
    state[brans] = xb1;
    tmpy ^= (state[1] = state[brans+1]);
    state[brans+1] = yb1;
    tmpx = ELL(tmpx);
    tmpy = ELL(tmpy);
    for(j = brans-2; j >= 0; j -= 2) {
      state[j+brans] ^= (tmpy ^ state[j]);
      state[j+brans+1] ^= (tmpx ^ state[j+1]);
    }
    // ARXBOX layer
    for(j = 0; j < 2*brans; j += 2) {
      rc = RCON[j>>1];
      state[j] ^= rc;
      state[j+1] ^= ROT(state[j], 16);
      state[j] -= ROT(state[j+1], 24);
      state[j] ^= rc;
      state[j+1] ^= ROT(state[j], 31);
      state[j] -= state[j+1];
      state[j] ^= rc;
      state[j+1] ^= ROT(state[j], 17);
      state[j] -= ROT(state[j+1], 17);
      state[j] ^= rc;
      state[j+1] ^= ROT(state[j], 24);
      state[j] -= ROT(state[j+1], 31);
    }
    // Add round constant
    state[1] ^= RCON[i%MAX_BRANCHES];
    state[3] ^= i;
  }
}


void clear_state_opt(uint32_t *state, int brans)
{
  int i;
  
  for (i = 0; i < 2*brans; i ++)
    state[i] = 0;
}


void print_state_opt(const uint32_t *state, int brans)
{
  uint8_t *sbytes = (uint8_t *) state;
  int i, j;
  
  for (i = 0; i < brans; i ++) {
    j = 8*i;
    printf("(%02x%02x%02x%02x %02x%02x%02x%02x)",       \
    sbytes[j],   sbytes[j+1], sbytes[j+2], sbytes[j+3], \
    sbytes[j+4], sbytes[j+5], sbytes[j+6], sbytes[j+7]);
    if (i < brans-1) printf(" ");
  }
  printf("\n");
}


void test_sparkle_opt(int brans, int steps)
{
  uint32_t state[2*MAX_BRANCHES] = { 0 };
  
  printf("input:\n");
  print_state_opt(state, brans);
  sparkle_opt(state, brans, steps);
  printf("sparkle:\n");
  print_state_opt(state, brans);
  sparkle_inv_opt(state, brans, steps);
  printf("sparkle inv:\n");
  print_state_opt(state, brans);
  printf("\n");
}