aead.c 9.02 KB
Newer Older
Martin Schlaeffer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
#include "api.h"
#include "ascon.h"
#include "crypto_aead.h"
#include "permutations.h"
#include "printstate.h"

#define AD()                                     \
  do {                                           \
    uint32_t adlen_hi = (uint32_t)(adlen >> 32); \
    uint32_t adlen_lo = (uint32_t)adlen;         \
    __asm__ __volatile__ ( \
        ".arm \n\t" \
        ".fpu neon \n\t" \
        "cmp %[adlen_hi], #0 \n\t" \
        "cmpeq %[adlen_lo], #15 \n\t" \
        "bls .LAD1 \n\t" \
        "vldm %[s], {d0-d4} \n\t" \
        ".LAD0: \n\t" \
        "vldm %[ad]!, {d16,d17} \n\t" \
        "vrev64.8 q8, q8 \n\t" \
        "veor q0, q0, q8 \n\t" \
        "vmvn d2, d2 \n\t" \
        P8ROUNDS(s) \
        "vmvn d2, d2 \n\t" \
        "subs %[adlen_lo], %[adlen_lo], #16 \n\t" \
        "sbc %[adlen_hi], %[adlen_hi], #0 \n\t" \
        "cmp %[adlen_hi], #0 \n\t" \
        "cmpeq %[adlen_lo], #15 \n\t" \
        "bhi .LAD0 \n\t" \
        "vstm %[s], {d0-d4} \n\t" \
        ".LAD1: \n\t" \
        : [adlen_hi] "+r" (adlen_hi), [adlen_lo] "+r" (adlen_lo), \
          [ad] "+r" (ad) \
        : [s] "r" (s), [C] "r" (C) \
        : "d0", "d1", "d2", "d3", "d4", \
          "d10", "d11", "d12", "d13", "d14", "d16", "d17", \
          "d20", "d21", "d22", "d23", "d24", \
          "d31", "memory");                     \
    adlen = (uint64_t)adlen_hi << 32 | adlen_lo; \
  } while (0)

#define PT()                                   \
  do {                                         \
    uint32_t mlen_hi = (uint32_t)(mlen >> 32); \
    uint32_t mlen_lo = (uint32_t)mlen;         \
    __asm__ __volatile__ ( \
        ".arm \n\t" \
        ".fpu neon \n\t" \
        "cmp %[mlen_hi], #0 \n\t" \
        "cmpeq %[mlen_lo], #15 \n\t" \
        "bls .LPT1 \n\t" \
        "vldm %[s], {d0-d4} \n\t" \
        ".LPT0: \n\t" \
        "vldm %[m]!, {d16,d17} \n\t" \
        "vrev64.8 q8, q8 \n\t" \
        "veor q0, q0, q8 \n\t" \
        "vrev64.8 q13, q0 \n\t" \
        "vstm %[c]!, {d26,d27} \n\t" \
        "vmvn d2, d2 \n\t" \
        P8ROUNDS(s) \
        "vmvn d2, d2 \n\t" \
        "subs %[mlen_lo], %[mlen_lo], #16 \n\t" \
        "sbc %[mlen_hi], %[mlen_hi], #0 \n\t" \
        "cmp %[mlen_hi], #0 \n\t" \
        "cmpeq %[mlen_lo], #15 \n\t" \
        "bhi .LPT0 \n\t" \
        "vstm %[s], {d0-d4} \n\t" \
        ".LPT1: \n\t" \
        : [mlen_hi] "+r" (mlen_hi), [mlen_lo] "+r" (mlen_lo), \
          [m] "+r" (m), [c] "+r" (c) \
        : [s] "r" (s), [C] "r" (C) \
        : "d0", "d1", "d2", "d3", "d4", \
          "d10", "d11", "d12", "d13", "d14", "d16", "d17", \
          "d20", "d21", "d22", "d23", "d24", "d26", "d27", \
          "d31", "memory");                   \
    mlen = (uint64_t)mlen_hi << 32 | mlen_lo;  \
  } while (0)

#define CT()                                   \
  do {                                         \
    uint32_t clen_hi = (uint32_t)(clen >> 32); \
    uint32_t clen_lo = (uint32_t)clen;         \
    __asm__ __volatile__ ( \
        ".arm \n\t" \
        ".fpu neon \n\t" \
        "cmp %[clen_hi], #0 \n\t" \
        "cmpeq %[clen_lo], #15 \n\t" \
        "bls .LCT1 \n\t" \
        "vldm %[s], {d0-d4} \n\t" \
        ".LCT0: \n\t" \
        "vldm %[c]!, {d26,d27} \n\t" \
        "vrev64.8 q8, q0 \n\t" \
        "veor q8, q8, q13 \n\t" \
        "vrev64.8 q0, q13 \n\t" \
        "vstm %[m]!, {d16,d17} \n\t" \
        "vmvn d2, d2 \n\t" \
        P8ROUNDS(s) \
        "vmvn d2, d2 \n\t" \
        "subs %[clen_lo], %[clen_lo], #16 \n\t" \
        "sbc %[clen_hi], %[clen_hi], #0 \n\t" \
        "cmp %[clen_hi], #0 \n\t" \
        "cmpeq %[clen_lo], #15 \n\t" \
        "bhi .LCT0 \n\t" \
        "vstm %[s], {d0-d4} \n\t" \
        ".LCT1: \n\t" \
        : [clen_hi] "+r" (clen_hi), [clen_lo] "+r" (clen_lo), \
          [m] "+r" (m), [c] "+r" (c) \
        : [s] "r" (s), [C] "r" (C) \
        : "d0", "d1", "d2", "d3", "d4", \
          "d10", "d11", "d12", "d13", "d14", "d16", "d17", \
          "d20", "d21", "d22", "d23", "d24", "d26", "d27", \
          "d31", "memory");                   \
    clen = (uint64_t)clen_hi << 32 | clen_lo;  \
  } while (0)

#if !ASCON_INLINE_MODE
#undef forceinline
#define forceinline
#endif

forceinline void ascon_loadkey(word_t* K0, word_t* K1, word_t* K2,
                               const uint8_t* k) {
  KINIT(K0, K1, K2);
  if (CRYPTO_KEYBYTES == 20) {
    *K0 = XOR(*K0, KEYROT(WORD_T(0), LOAD(k, 4)));
    k += 4;
  }
  *K1 = XOR(*K1, LOAD(k, 8));
  *K2 = XOR(*K2, LOAD(k + 8, 8));
}

forceinline void ascon_init(state_t* s, const uint8_t* npub, const uint8_t* k) {
  /* load nonce */
  word_t N0 = LOAD(npub, 8);
  word_t N1 = LOAD(npub + 8, 8);
  /* load key */
  word_t K0, K1, K2;
  ascon_loadkey(&K0, &K1, &K2, k);
  /* initialize */
  PINIT(s);
  if (CRYPTO_KEYBYTES == 16 && ASCON_RATE == 8)
    s->x0 = XOR(s->x0, ASCON_128_IV);
  if (CRYPTO_KEYBYTES == 16 && ASCON_RATE == 16)
    s->x0 = XOR(s->x0, ASCON_128A_IV);
  if (CRYPTO_KEYBYTES == 20) s->x0 = XOR(s->x0, ASCON_80PQ_IV);
  if (CRYPTO_KEYBYTES == 20) s->x0 = XOR(s->x0, K0);
  s->x1 = XOR(s->x1, K1);
  s->x2 = XOR(s->x2, K2);
  s->x3 = XOR(s->x3, N0);
  s->x4 = XOR(s->x4, N1);
  P(s, 12);
  if (CRYPTO_KEYBYTES == 20) s->x2 = XOR(s->x2, K0);
  s->x3 = XOR(s->x3, K1);
  s->x4 = XOR(s->x4, K2);
  printstate("initialization", s);
}

forceinline void ascon_adata(state_t* s, const uint8_t* ad, uint64_t adlen) {
  const int nr = (ASCON_RATE == 8) ? 6 : 8;
  if (adlen) {
    /* full associated data blocks */
    AD();
    /* final associated data block */
    word_t* px = &s->x0;
    if (ASCON_RATE == 16 && adlen >= 8) {
      s->x0 = XOR(s->x0, LOAD(ad, 8));
      px = &s->x1;
      ad += 8;
      adlen -= 8;
    }
    *px = XOR(*px, PAD(adlen));
    if (adlen) *px = XOR(*px, LOAD(ad, adlen));
    P(s, nr);
  }
  /* domain separation */
  s->x4 = XOR(s->x4, WORD_T(1));
  printstate("process associated data", s);
}

forceinline void ascon_encrypt(state_t* s, uint8_t* c, const uint8_t* m,
                               uint64_t mlen) {
  const int nr = (ASCON_RATE == 8) ? 6 : 8;
  /* full plaintext blocks */
  PT();
  /* final plaintext block */
  word_t* px = &s->x0;
  if (ASCON_RATE == 16 && mlen >= 8) {
    s->x0 = XOR(s->x0, LOAD(m, 8));
    STORE(c, s->x0, 8);
    px = &s->x1;
    m += 8;
    c += 8;
    mlen -= 8;
  }
  *px = XOR(*px, PAD(mlen));
  if (mlen) {
    *px = XOR(*px, LOAD(m, mlen));
    STORE(c, *px, mlen);
  }
  printstate("process plaintext", s);
}

forceinline void ascon_decrypt(state_t* s, uint8_t* m, const uint8_t* c,
                               uint64_t clen) {
  const int nr = (ASCON_RATE == 8) ? 6 : 8;
  /* full ciphertext blocks */
  CT();
  /* final ciphertext block */
  word_t* px = &s->x0;
  if (ASCON_RATE == 16 && clen >= 8) {
    word_t cx = LOAD(c, 8);
    s->x0 = XOR(s->x0, cx);
    STORE(m, s->x0, 8);
    s->x0 = cx;
    px = &s->x1;
    m += 8;
    c += 8;
    clen -= 8;
  }
  *px = XOR(*px, PAD(clen));
  if (clen) {
    word_t cx = LOAD(c, clen);
    *px = XOR(*px, cx);
    STORE(m, *px, clen);
    *px = CLEAR(*px, clen);
    *px = XOR(*px, cx);
  }
  printstate("process ciphertext", s);
}

forceinline void ascon_final(state_t* s, const uint8_t* k) {
  /* load key */
  word_t K0, K1, K2;
  ascon_loadkey(&K0, &K1, &K2, k);
  /* finalize */
  if (CRYPTO_KEYBYTES == 16 && ASCON_RATE == 8) {
    s->x1 = XOR(s->x1, K1);
    s->x2 = XOR(s->x2, K2);
  }
  if (CRYPTO_KEYBYTES == 16 && ASCON_RATE == 16) {
    s->x2 = XOR(s->x2, K1);
    s->x3 = XOR(s->x3, K2);
  }
  if (CRYPTO_KEYBYTES == 20) {
    s->x1 = XOR(s->x1, KEYROT(K0, K1));
    s->x2 = XOR(s->x2, KEYROT(K1, K2));
    s->x3 = XOR(s->x3, KEYROT(K2, WORD_T(0)));
  }
  P(s, 12);
  s->x3 = XOR(s->x3, K1);
  s->x4 = XOR(s->x4, K2);
  printstate("finalization", s);
}

int crypto_aead_encrypt(unsigned char* c, unsigned long long* clen,
                        const unsigned char* m, unsigned long long mlen,
                        const unsigned char* ad, unsigned long long adlen,
                        const unsigned char* nsec, const unsigned char* npub,
                        const unsigned char* k) {
  state_t s;
  (void)nsec;
  *clen = mlen + CRYPTO_ABYTES;
  /* perform ascon computation */
  ascon_init(&s, npub, k);
  ascon_adata(&s, ad, adlen);
  ascon_encrypt(&s, c, m, mlen);
  ascon_final(&s, k);
  /* set tag */
  STOREBYTES(c + mlen, s.x3, 8);
  STOREBYTES(c + mlen + 8, s.x4, 8);
  return 0;
}

int crypto_aead_decrypt(unsigned char* m, unsigned long long* mlen,
                        unsigned char* nsec, const unsigned char* c,
                        unsigned long long clen, const unsigned char* ad,
                        unsigned long long adlen, const unsigned char* npub,
                        const unsigned char* k) {
  state_t s;
  (void)nsec;
  if (clen < CRYPTO_ABYTES) return -1;
  *mlen = clen = clen - CRYPTO_ABYTES;
  /* perform ascon computation */
  ascon_init(&s, npub, k);
  ascon_adata(&s, ad, adlen);
  ascon_decrypt(&s, m, c, clen);
  ascon_final(&s, k);
  /* verify tag (should be constant time, check compiler output) */
  s.x3 = XOR(s.x3, LOADBYTES(c + clen, 8));
  s.x4 = XOR(s.x4, LOADBYTES(c + clen + 8, 8));
  return NOTZERO(s.x3, s.x4);
}