internal-sliscp-light.c 13.3 KB
Newer Older
Rhys Weatherley committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright (C) 2020 Southern Storm Software, Pty Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "internal-sliscp-light.h"

25 26
#if !defined(__AVR__)

Rhys Weatherley committed
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/**
 * \brief Performs one round of the Simeck-64 block cipher.
 *
 * \param x Left half of the 64-bit block.
 * \param y Right half of the 64-bit block.
 */
#define simeck64_round(x, y) \
    do { \
        (y) ^= (leftRotate5((x)) & (x)) ^ leftRotate1((x)) ^ \
               0xFFFFFFFEU ^ (_rc & 1); \
        _rc >>= 1; \
    } while (0)

/**
 * \brief Encrypts a 64-bit block with the 8 round version of Simeck-64.
 *
 * \param x Left half of the 64-bit block.
 * \param y Right half of the 64-bit block.
 * \param rc Round constants for the 8 rounds, 1 bit per round.
 *
 * It is assumed that the two halves have already been converted from
 * big-endian to host byte order before calling this function.  The output
 * halves will also be in host byte order.
 */
#define simeck64_box(x, y, rc) \
    do { \
        unsigned char _rc = (rc); \
        simeck64_round(x, y);   /* Round 1 */ \
        simeck64_round(y, x);   /* Round 2 */ \
        simeck64_round(x, y);   /* Round 3 */ \
        simeck64_round(y, x);   /* Round 4 */ \
        simeck64_round(x, y);   /* Round 5 */ \
        simeck64_round(y, x);   /* Round 6 */ \
        simeck64_round(x, y);   /* Round 7 */ \
        simeck64_round(y, x);   /* Round 8 */ \
    } while (0)

/* Helper macros for 48-bit left rotations */
#define leftRotate5_48(x) (((x) << 5) | ((x) >> 19))
#define leftRotate1_48(x) (((x) << 1) | ((x) >> 23))

/**
 * \brief Performs one round of the Simeck-48 block cipher.
 *
 * \param x Left half of the 48-bit block.
 * \param y Right half of the 48-bit block.
 */
#define simeck48_round(x, y) \
    do { \
        (y) ^= (leftRotate5_48((x)) & (x)) ^ leftRotate1_48((x)) ^ \
               0x00FFFFFEU ^ (_rc & 1); \
        (y) &= 0x00FFFFFFU; \
        _rc >>= 1; \
    } while (0)

/**
 * \brief Encrypts a 48-bit block with the 6 round version of Simeck-48.
 *
 * \param x Left half of the 48-bit block.
 * \param y Right half of the 48-bit block.
 * \param rc Round constants for the 8 rounds, 1 bit per round.
 *
 * It is assumed that the two halves have already been converted from
 * big-endian to host byte order before calling this function.  The output
 * halves will also be in host byte order.
 */
#define simeck48_box(x, y, rc) \
    do { \
        unsigned char _rc = (rc); \
        simeck48_round(x, y);   /* Round 1 */ \
        simeck48_round(y, x);   /* Round 2 */ \
        simeck48_round(x, y);   /* Round 3 */ \
        simeck48_round(y, x);   /* Round 4 */ \
        simeck48_round(x, y);   /* Round 5 */ \
        simeck48_round(y, x);   /* Round 6 */ \
    } while (0)

/* Interleaved rc0, rc1, sc0, and sc1 values for each round */
static unsigned char const sliscp_light256_RC[18 * 4] = {
    0x0f, 0x47, 0x08, 0x64, 0x04, 0xb2, 0x86, 0x6b,
    0x43, 0xb5, 0xe2, 0x6f, 0xf1, 0x37, 0x89, 0x2c,
    0x44, 0x96, 0xe6, 0xdd, 0x73, 0xee, 0xca, 0x99,
    0xe5, 0x4c, 0x17, 0xea, 0x0b, 0xf5, 0x8e, 0x0f,
    0x47, 0x07, 0x64, 0x04, 0xb2, 0x82, 0x6b, 0x43,
    0xb5, 0xa1, 0x6f, 0xf1, 0x37, 0x78, 0x2c, 0x44,
    0x96, 0xa2, 0xdd, 0x73, 0xee, 0xb9, 0x99, 0xe5,
    0x4c, 0xf2, 0xea, 0x0b, 0xf5, 0x85, 0x0f, 0x47,
    0x07, 0x23, 0x04, 0xb2, 0x82, 0xd9, 0x43, 0xb5
};

void sliscp_light256_permute_spix(unsigned char block[32], unsigned rounds)
{
    const unsigned char *rc = sliscp_light256_RC;
    uint32_t x0, x1, x2, x3, x4, x5, x6, x7;
    uint32_t t0, t1;

    /* Load the block into local state variables */
    x0 = be_load_word32(block);
    x1 = be_load_word32(block + 4);
    x2 = be_load_word32(block + 8);
    x3 = be_load_word32(block + 24); /* Assumes the block is pre-swapped */
    x4 = be_load_word32(block + 16);
    x5 = be_load_word32(block + 20);
    x6 = be_load_word32(block + 12);
    x7 = be_load_word32(block + 28);

    /* Perform all permutation rounds */
    for (; rounds > 0; --rounds, rc += 4) {
        /* Apply Simeck-64 to two of the 64-bit sub-blocks */
        simeck64_box(x2, x3, rc[0]);
        simeck64_box(x6, x7, rc[1]);

        /* Add step constants */
        x0 ^= 0xFFFFFFFFU;
        x1 ^= 0xFFFFFF00U ^ rc[2];
        x4 ^= 0xFFFFFFFFU;
        x5 ^= 0xFFFFFF00U ^ rc[3];

        /* Mix the sub-blocks */
        t0 = x0 ^ x2;
        t1 = x1 ^ x3;
        x0 = x2;
        x1 = x3;
        x2 = x4 ^ x6;
        x3 = x5 ^ x7;
        x4 = x6;
        x5 = x7;
        x6 = t0;
        x7 = t1;
    }

    /* Store the state back into the block */
    be_store_word32(block,      x0);
    be_store_word32(block +  4, x1);
    be_store_word32(block +  8, x2);
    be_store_word32(block + 24, x3); /* Assumes the block is pre-swapped */
    be_store_word32(block + 16, x4);
    be_store_word32(block + 20, x5);
    be_store_word32(block + 12, x6);
    be_store_word32(block + 28, x7);
}

void sliscp_light256_swap_spix(unsigned char block[32])
{
    uint32_t t1, t2;
    t1 = le_load_word32(block + 12);
    t2 = le_load_word32(block + 24);
    le_store_word32(block + 24, t1);
    le_store_word32(block + 12, t2);
}

178
void sliscp_light256_permute_spoc(unsigned char block[32])
Rhys Weatherley committed
179 180 181 182
{
    const unsigned char *rc = sliscp_light256_RC;
    uint32_t x0, x1, x2, x3, x4, x5, x6, x7;
    uint32_t t0, t1;
183
    unsigned round;
Rhys Weatherley committed
184 185 186 187 188 189 190 191 192 193 194 195

    /* Load the block into local state variables */
    x0 = be_load_word32(block);
    x1 = be_load_word32(block + 4);
    x2 = be_load_word32(block + 16); /* Assumes the block is pre-swapped */
    x3 = be_load_word32(block + 20);
    x4 = be_load_word32(block + 8);
    x5 = be_load_word32(block + 12);
    x6 = be_load_word32(block + 24);
    x7 = be_load_word32(block + 28);

    /* Perform all permutation rounds */
196
    for (round = 0; round < 18; ++round, rc += 4) {
Rhys Weatherley committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        /* Apply Simeck-64 to two of the 64-bit sub-blocks */
        simeck64_box(x2, x3, rc[0]);
        simeck64_box(x6, x7, rc[1]);

        /* Add step constants */
        x0 ^= 0xFFFFFFFFU;
        x1 ^= 0xFFFFFF00U ^ rc[2];
        x4 ^= 0xFFFFFFFFU;
        x5 ^= 0xFFFFFF00U ^ rc[3];

        /* Mix the sub-blocks */
        t0 = x0 ^ x2;
        t1 = x1 ^ x3;
        x0 = x2;
        x1 = x3;
        x2 = x4 ^ x6;
        x3 = x5 ^ x7;
        x4 = x6;
        x5 = x7;
        x6 = t0;
        x7 = t1;
    }

    /* Store the state back into the block */
    be_store_word32(block,      x0);
    be_store_word32(block +  4, x1);
    be_store_word32(block + 16, x2); /* Assumes the block is pre-swapped */
    be_store_word32(block + 20, x3);
    be_store_word32(block +  8, x4);
    be_store_word32(block + 12, x5);
    be_store_word32(block + 24, x6);
    be_store_word32(block + 28, x7);
}

void sliscp_light256_swap_spoc(unsigned char block[32])
{
    uint64_t t1, t2;
    t1 = le_load_word64(block + 8);
    t2 = le_load_word64(block + 16);
    le_store_word64(block + 16, t1);
    le_store_word64(block +  8, t2);
}

/* Load a big-endian 24-bit word from a byte buffer */
#define be_load_word24(ptr) \
    ((((uint32_t)((ptr)[0])) << 16) | \
     (((uint32_t)((ptr)[1])) << 8) | \
      ((uint32_t)((ptr)[2])))

/* Store a big-endian 24-bit word into a byte buffer */
#define be_store_word24(ptr, x) \
    do { \
        uint32_t _x = (x); \
        (ptr)[0] = (uint8_t)(_x >> 16); \
        (ptr)[1] = (uint8_t)(_x >> 8); \
        (ptr)[2] = (uint8_t)_x; \
    } while (0)

void sliscp_light192_permute(unsigned char block[24])
{
    /* Interleaved rc0, rc1, sc0, and sc1 values for each round */
    static unsigned char const RC[18 * 4] = {
        0x07, 0x27, 0x08, 0x29, 0x04, 0x34, 0x0c, 0x1d,
        0x06, 0x2e, 0x0a, 0x33, 0x25, 0x19, 0x2f, 0x2a,
        0x17, 0x35, 0x38, 0x1f, 0x1c, 0x0f, 0x24, 0x10,
        0x12, 0x08, 0x36, 0x18, 0x3b, 0x0c, 0x0d, 0x14,
        0x26, 0x0a, 0x2b, 0x1e, 0x15, 0x2f, 0x3e, 0x31,
        0x3f, 0x38, 0x01, 0x09, 0x20, 0x24, 0x21, 0x2d,
        0x30, 0x36, 0x11, 0x1b, 0x28, 0x0d, 0x39, 0x16,
        0x3c, 0x2b, 0x05, 0x3d, 0x22, 0x3e, 0x27, 0x03,
        0x13, 0x01, 0x34, 0x02, 0x1a, 0x21, 0x2e, 0x23
    };
    const unsigned char *rc = RC;
    uint32_t x0, x1, x2, x3, x4, x5, x6, x7;
    uint32_t t0, t1;
    unsigned round;

    /* Load the block into local state variables.  Each 24-bit block is
     * placed into a separate 32-bit word which improves efficiency below */
    x0 = be_load_word24(block);
    x1 = be_load_word24(block + 3);
    x2 = be_load_word24(block + 6);
    x3 = be_load_word24(block + 9);
    x4 = be_load_word24(block + 12);
    x5 = be_load_word24(block + 15);
    x6 = be_load_word24(block + 18);
    x7 = be_load_word24(block + 21);

    /* Perform all permutation rounds */
    for (round = 0; round < 18; ++round, rc += 4) {
        /* Apply Simeck-48 to two of the 48-bit sub-blocks */
        simeck48_box(x2, x3, rc[0]);
        simeck48_box(x6, x7, rc[1]);

        /* Add step constants */
        x0 ^= 0x00FFFFFFU;
        x1 ^= 0x00FFFF00U ^ rc[2];
        x4 ^= 0x00FFFFFFU;
        x5 ^= 0x00FFFF00U ^ rc[3];

        /* Mix the sub-blocks */
        t0 = x0 ^ x2;
        t1 = x1 ^ x3;
        x0 = x2;
        x1 = x3;
        x2 = x4 ^ x6;
        x3 = x5 ^ x7;
        x4 = x6;
        x5 = x7;
        x6 = t0;
        x7 = t1;
    }

    /* Store the state back into the block */
    be_store_word24(block,      x0);
    be_store_word24(block +  3, x1);
    be_store_word24(block +  6, x2);
    be_store_word24(block +  9, x3);
    be_store_word24(block + 12, x4);
    be_store_word24(block + 15, x5);
    be_store_word24(block + 18, x6);
    be_store_word24(block + 21, x7);
}

void sliscp_light320_permute(unsigned char block[40])
{
    /* Interleaved rc0, rc1, rc2, sc0, sc1, and sc2 values for each round */
    static unsigned char const RC[16 * 6] = {
        0x07, 0x53, 0x43, 0x50, 0x28, 0x14, 0x0a, 0x5d,
        0xe4, 0x5c, 0xae, 0x57, 0x9b, 0x49, 0x5e, 0x91,
        0x48, 0x24, 0xe0, 0x7f, 0xcc, 0x8d, 0xc6, 0x63,
        0xd1, 0xbe, 0x32, 0x53, 0xa9, 0x54, 0x1a, 0x1d,
        0x4e, 0x60, 0x30, 0x18, 0x22, 0x28, 0x75, 0x68,
        0x34, 0x9a, 0xf7, 0x6c, 0x25, 0xe1, 0x70, 0x38,
        0x62, 0x82, 0xfd, 0xf6, 0x7b, 0xbd, 0x96, 0x47,
        0xf9, 0x9d, 0xce, 0x67, 0x71, 0x6b, 0x76, 0x40,
        0x20, 0x10, 0xaa, 0x88, 0xa0, 0x4f, 0x27, 0x13,
        0x2b, 0xdc, 0xb0, 0xbe, 0x5f, 0x2f, 0xe9, 0x8b,
        0x09, 0x5b, 0xad, 0xd6, 0xcf, 0x59, 0x1e, 0xe9,
        0x74, 0xba, 0xb7, 0xc6, 0xad, 0x7f, 0x3f, 0x1f
    };
    const unsigned char *rc = RC;
    uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
    uint32_t t0, t1;
    unsigned round;

    /* Load the block into local state variables */
    x0 = be_load_word32(block);
    x1 = be_load_word32(block + 16); /* Assumes the block is pre-swapped */
    x2 = be_load_word32(block + 8);
    x3 = be_load_word32(block + 12);
    x4 = be_load_word32(block + 4);
    x5 = be_load_word32(block + 20);
    x6 = be_load_word32(block + 24);
    x7 = be_load_word32(block + 28);
    x8 = be_load_word32(block + 32);
    x9 = be_load_word32(block + 36);

    /* Perform all permutation rounds */
    for (round = 0; round < 16; ++round, rc += 6) {
        /* Apply Simeck-64 to three of the 64-bit sub-blocks */
        simeck64_box(x0, x1, rc[0]);
        simeck64_box(x4, x5, rc[1]);
        simeck64_box(x8, x9, rc[2]);
        x6 ^= x8;
        x7 ^= x9;
        x2 ^= x4;
        x3 ^= x5;
        x8 ^= x0;
        x9 ^= x1;

        /* Add step constants */
        x2 ^= 0xFFFFFFFFU;
        x3 ^= 0xFFFFFF00U ^ rc[3];
        x6 ^= 0xFFFFFFFFU;
        x7 ^= 0xFFFFFF00U ^ rc[4];
        x8 ^= 0xFFFFFFFFU;
        x9 ^= 0xFFFFFF00U ^ rc[5];

        /* Rotate the sub-blocks */
        t0 = x8;
        t1 = x9;
        x8 = x2;
        x9 = x3;
        x2 = x4;
        x3 = x5;
        x4 = x0;
        x5 = x1;
        x0 = x6;
        x1 = x7;
        x6 = t0;
        x7 = t1;
    }

    /* Store the state back into the block */
    be_store_word32(block,      x0);
    be_store_word32(block + 16, x1); /* Assumes the block is pre-swapped */
    be_store_word32(block +  8, x2);
    be_store_word32(block + 12, x3);
    be_store_word32(block +  4, x4);
    be_store_word32(block + 20, x5);
    be_store_word32(block + 24, x6);
    be_store_word32(block + 28, x7);
    be_store_word32(block + 32, x8);
    be_store_word32(block + 36, x9);
}

void sliscp_light320_swap(unsigned char block[40])
{
    uint32_t t1, t2;
    t1 = le_load_word32(block + 4);
    t2 = le_load_word32(block + 16);
    le_store_word32(block + 16, t1);
    le_store_word32(block +  4, t2);
}
412 413

#endif /* !__AVR__ */