internal-cham.c 5.42 KB
Newer Older
Rhys Weatherley committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * Copyright (C) 2020 Southern Storm Software, Pty Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "internal-cham.h"
#include "internal-util.h"

#if !defined(__AVR__)

void cham128_128_encrypt
    (const unsigned char *key, unsigned char *output,
     const unsigned char *input)
{
    uint32_t x0, x1, x2, x3;
    uint32_t k[8];
    uint8_t round;

    /* Unpack the key and generate the key schedule */
    k[0] = le_load_word32(key);
    k[1] = le_load_word32(key + 4);
    k[2] = le_load_word32(key + 8);
    k[3] = le_load_word32(key + 12);
    k[4] = k[1] ^ leftRotate1(k[1]) ^ leftRotate11(k[1]);
    k[5] = k[0] ^ leftRotate1(k[0]) ^ leftRotate11(k[0]);
    k[6] = k[3] ^ leftRotate1(k[3]) ^ leftRotate11(k[3]);
    k[7] = k[2] ^ leftRotate1(k[2]) ^ leftRotate11(k[2]);
    k[0] ^= leftRotate1(k[0]) ^ leftRotate8(k[0]);
    k[1] ^= leftRotate1(k[1]) ^ leftRotate8(k[1]);
    k[2] ^= leftRotate1(k[2]) ^ leftRotate8(k[2]);
    k[3] ^= leftRotate1(k[3]) ^ leftRotate8(k[3]);

    /* Unpack the input block */
    x0 = le_load_word32(input);
    x1 = le_load_word32(input + 4);
    x2 = le_load_word32(input + 8);
    x3 = le_load_word32(input + 12);

    /* Perform the 80 rounds eight at a time */
    for (round = 0; round < 80; round += 8) {
        x0 = leftRotate8((x0 ^ round)       + (leftRotate1(x1) ^ k[0]));
        x1 = leftRotate1((x1 ^ (round + 1)) + (leftRotate8(x2) ^ k[1]));
        x2 = leftRotate8((x2 ^ (round + 2)) + (leftRotate1(x3) ^ k[2]));
        x3 = leftRotate1((x3 ^ (round + 3)) + (leftRotate8(x0) ^ k[3]));
        x0 = leftRotate8((x0 ^ (round + 4)) + (leftRotate1(x1) ^ k[4]));
        x1 = leftRotate1((x1 ^ (round + 5)) + (leftRotate8(x2) ^ k[5]));
        x2 = leftRotate8((x2 ^ (round + 6)) + (leftRotate1(x3) ^ k[6]));
        x3 = leftRotate1((x3 ^ (round + 7)) + (leftRotate8(x0) ^ k[7]));
    }

    /* Pack the state into the output block */
    le_store_word32(output,      x0);
    le_store_word32(output + 4,  x1);
    le_store_word32(output + 8,  x2);
    le_store_word32(output + 12, x3);
}

void cham64_128_encrypt
    (const unsigned char *key, unsigned char *output,
     const unsigned char *input)
{
    uint16_t x0, x1, x2, x3;
    uint16_t k[16];
    uint8_t round;

    /* Unpack the key and generate the key schedule */
    k[0]  = le_load_word16(key);
    k[1]  = le_load_word16(key + 2);
    k[2]  = le_load_word16(key + 4);
    k[3]  = le_load_word16(key + 6);
    k[4]  = le_load_word16(key + 8);
    k[5]  = le_load_word16(key + 10);
    k[6]  = le_load_word16(key + 12);
    k[7]  = le_load_word16(key + 14);
    k[8]  = k[1] ^ leftRotate1_16(k[1]) ^ leftRotate11_16(k[1]);
    k[9]  = k[0] ^ leftRotate1_16(k[0]) ^ leftRotate11_16(k[0]);
    k[10] = k[3] ^ leftRotate1_16(k[3]) ^ leftRotate11_16(k[3]);
    k[11] = k[2] ^ leftRotate1_16(k[2]) ^ leftRotate11_16(k[2]);
    k[12] = k[5] ^ leftRotate1_16(k[5]) ^ leftRotate11_16(k[5]);
    k[13] = k[4] ^ leftRotate1_16(k[4]) ^ leftRotate11_16(k[4]);
    k[14] = k[7] ^ leftRotate1_16(k[7]) ^ leftRotate11_16(k[7]);
    k[15] = k[6] ^ leftRotate1_16(k[6]) ^ leftRotate11_16(k[6]);
    k[0] ^= leftRotate1_16(k[0]) ^ leftRotate8_16(k[0]);
    k[1] ^= leftRotate1_16(k[1]) ^ leftRotate8_16(k[1]);
    k[2] ^= leftRotate1_16(k[2]) ^ leftRotate8_16(k[2]);
    k[3] ^= leftRotate1_16(k[3]) ^ leftRotate8_16(k[3]);
    k[4] ^= leftRotate1_16(k[4]) ^ leftRotate8_16(k[4]);
    k[5] ^= leftRotate1_16(k[5]) ^ leftRotate8_16(k[5]);
    k[6] ^= leftRotate1_16(k[6]) ^ leftRotate8_16(k[6]);
    k[7] ^= leftRotate1_16(k[7]) ^ leftRotate8_16(k[7]);

    /* Unpack the input block */
    x0 = le_load_word16(input);
    x1 = le_load_word16(input + 2);
    x2 = le_load_word16(input + 4);
    x3 = le_load_word16(input + 6);

    /* Perform the 80 rounds four at a time */
    for (round = 0; round < 80; round += 4) {
        x0 = leftRotate8_16
            ((x0 ^ round) +
             (leftRotate1_16(x1) ^ k[round % 16]));
        x1 = leftRotate1_16
            ((x1 ^ (round + 1)) +
             (leftRotate8_16(x2) ^ k[(round + 1) % 16]));
        x2 = leftRotate8_16
            ((x2 ^ (round + 2)) +
             (leftRotate1_16(x3) ^ k[(round + 2) % 16]));
        x3 = leftRotate1_16
            ((x3 ^ (round + 3)) +
             (leftRotate8_16(x0) ^ k[(round + 3) % 16]));
    }

    /* Pack the state into the output block */
    le_store_word16(output,     x0);
    le_store_word16(output + 2, x1);
    le_store_word16(output + 4, x2);
    le_store_word16(output + 6, x3);
}

#endif