skinny128.c 6.71 KB
Newer Older
Alexandre Adomnicai committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/******************************************************************************
* Fixsliced implementation of SKINNY-128-384.
* Two blocks are processed in parallel.
*
* This implementation doesn't compute the ShiftRows operation. Some masks and
* shifts are applied during the MixColumns operation so that the proper bits
* are XORed together. Moreover, the row permutation within the MixColumns 
* is omitted, as well as the bit permutation at the end of the Sbox. The rows
* are synchronized with the classical after only 4 rounds. However, the Sbox
* permutation requires 8 rounds for a synchronization. To limit the impact
* on code size, we compute the permutation every 4 rounds. Therefore, this
* implementation relies on a "QUADRUPLE_ROUND" routine.
*
* For more details, see the paper at: https://
*
* @author	Alexandre Adomnicai, Nanyang Technological University,
*			alexandre.adomnicai@ntu.edu.sg
*
Alexandre Adomnicai committed
19
* @date		June 2020
Alexandre Adomnicai committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
******************************************************************************/
#include "skinny128.h"

/****************************************************************************
* The MixColumns operation for rounds i such that (i % 4) == 0.
****************************************************************************/
void mixcolumns_0(u32* state) {
	u32 tmp;
	for(int i = 0; i < 8; i++) {
		tmp = ROR(state[i],24) & 0x0c0c0c0c;
		state[i] ^= ROR(tmp,30);
		tmp = ROR(state[i],16) & 0xc0c0c0c0;
		state[i] ^= ROR(tmp,4);
		tmp = ROR(state[i],8) & 0x0c0c0c0c;
		state[i] ^= ROR(tmp,2);
	}
}

/****************************************************************************
* The MixColumns operation for rounds i such that (i % 4) == 1.
****************************************************************************/
void mixcolumns_1(u32* state) {
	u32 tmp;
	for(int i = 0; i < 8; i++) {
		tmp = ROR(state[i],16) & 0x30303030;
		state[i] ^= ROR(tmp,30);
		tmp = state[i] & 0x03030303;
		state[i] ^= ROR(tmp,28);
		tmp = ROR(state[i],16) & 0x30303030;
		state[i] ^= ROR(tmp,2);
	}
}

/****************************************************************************
* The MixColumns operation for rounds i such that (i % 4) == 2.
****************************************************************************/
void mixcolumns_2(u32* state) {
	u32 tmp;
	for(int i = 0; i < 8; i++) {
		tmp = ROR(state[i],8) & 0xc0c0c0c0;
		state[i] ^= ROR(tmp,6);
		tmp = ROR(state[i],16) & 0x0c0c0c0c;
		state[i] ^= ROR(tmp,28);
		tmp = ROR(state[i],24) & 0xc0c0c0c0;
		state[i] ^= ROR(tmp,2);
	}
}

/****************************************************************************
* The MixColumns operation for rounds i such that (i % 4) == 3.
****************************************************************************/
void mixcolumns_3(u32* state) {
	u32 tmp;
	for(int i = 0; i < 8; i++) {
		tmp = state[i] & 0x03030303;
		state[i] ^= ROR(tmp,30);
		tmp = state[i] & 0x30303030;
		state[i] ^= ROR(tmp,4);
		tmp = state[i] & 0x03030303;
		state[i] ^= ROR(tmp,26);
	}
}

/****************************************************************************
Alexandre Adomnicai committed
84
* The inverse MixColumns operation for rounds i such that (i % 4) == 0
Alexandre Adomnicai committed
85 86 87 88 89 90 91 92 93 94 95 96 97 98
****************************************************************************/
void inv_mixcolumns_0(u32* state) {
	u32 tmp;
	for(int i = 0; i < 8; i++) {
		tmp = ROR(state[i],8) & 0x0c0c0c0c;
		state[i] ^= ROR(tmp,2);
		tmp = ROR(state[i],16) & 0xc0c0c0c0;
		state[i] ^= ROR(tmp,4);
		tmp = ROR(state[i],24) & 0x0c0c0c0c;
		state[i] ^= ROR(tmp,30);
	}
}

/****************************************************************************
Alexandre Adomnicai committed
99
* The inverse MixColumns operation for rounds i such that (i % 4) == 1
Alexandre Adomnicai committed
100 101 102 103 104 105 106 107 108 109 110 111 112 113
****************************************************************************/
void inv_mixcolumns_1(u32* state) {
	u32 tmp;
	for(int i = 0; i < 8; i++) {
		tmp = ROR(state[i],16) & 0x30303030;
		state[i] ^= ROR(tmp,2);
		tmp = state[i] & 0x03030303;
		state[i] ^= ROR(tmp,28);
		tmp = ROR(state[i],16) & 0x30303030;
		state[i] ^= ROR(tmp,30);
	}
}

/****************************************************************************
Alexandre Adomnicai committed
114
* The inverse MixColumns operation for rounds i such that (i % 4) == 2
Alexandre Adomnicai committed
115 116 117 118 119 120 121 122 123 124 125 126 127 128
****************************************************************************/
void inv_mixcolumns_2(u32* state) {
	u32 tmp;
	for(int i = 0; i < 8; i++) {
		tmp = ROR(state[i],24) & 0xc0c0c0c0;
		state[i] ^= ROR(tmp,2);
		tmp = ROR(state[i],16) & 0x0c0c0c0c;
		state[i] ^= ROR(tmp,28);
		tmp = ROR(state[i],8) & 0xc0c0c0c0;
		state[i] ^= ROR(tmp,6);
	}
}

/****************************************************************************
Alexandre Adomnicai committed
129
* The inverse MixColumns operation for rounds i such that (i % 4) == 3
Alexandre Adomnicai committed
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
****************************************************************************/
void inv_mixcolumns_3(u32* state) {
	u32 tmp;
	for(int i = 0; i < 8; i++) {
		tmp = state[i] & 0x03030303;
		state[i] ^= ROR(tmp,26);
		tmp = state[i] & 0x30303030;
		state[i] ^= ROR(tmp,4);
		tmp = state[i] & 0x03030303;
		state[i] ^= ROR(tmp,30);
	}
}

/****************************************************************************
* Adds the tweakey (including the round constants) to the state.
****************************************************************************/
void add_tweakey(u32* state, const u32* rtk1, const u32* rtk2_3) {
	state[0] ^= rtk1[0] ^ rtk2_3[0];
	state[1] ^= rtk1[1] ^ rtk2_3[1]; 
	state[2] ^= rtk1[2] ^ rtk2_3[2];
	state[3] ^= rtk1[3] ^ rtk2_3[3];
	state[4] ^= rtk1[4] ^ rtk2_3[4];
	state[5] ^= rtk1[5] ^ rtk2_3[5];
	state[6] ^= rtk1[6] ^ rtk2_3[6];
	state[7] ^= rtk1[7] ^ rtk2_3[7];
}

/****************************************************************************
* Encryption of 2 blocks in parallel using SKINNY-128-384.
* The input parameters 'rtk1' and 'rtk2_3' are given seperately to avoid
* unnecessary recomputations of the entire tk schedule during SKINNY-AEAD-M1.
****************************************************************************/
void skinny128_384_encrypt(u8* ctext, u8* ctext_bis, const u8* ptext, 
					const u8* ptext_bis, const tweakey tk) {
	u32 state[8];
	packing(state, ptext, ptext_bis);
Alexandre Adomnicai committed
166 167
	for(int i = 0; i < 14; i++)
		QUADRUPLE_ROUND(state, tk.rtk1 + (i%4)*32, tk.rtk2_3 + i*32);
Alexandre Adomnicai committed
168 169 170 171 172 173 174 175 176 177 178 179
	unpacking(ctext, ctext_bis, state);
}

/****************************************************************************
* Decryption of 2 blocks in parallel using SKINNY-128-384.
* The input parameters 'rtk1' and 'rtk2_3' are given seperately to avoid
* unnecessary recomputations of the entire tk schedule during SKINNY-AEAD-M1.
****************************************************************************/
void skinny128_384_decrypt(u8* ptext, u8* ptext_bis, const u8* ctext, 
					const u8* ctext_bis, const tweakey tk) {
	u32 state[8];
	packing(state, ctext, ctext_bis);
Alexandre Adomnicai committed
180 181
	for(int i = 13; i >= 0; i--)
		INV_QUADRUPLE_ROUND(state, tk.rtk1 + (i%4)*32, tk.rtk2_3 + i*32);
Alexandre Adomnicai committed
182 183
	unpacking(ptext, ptext_bis, state);
}