primitives.c 10.2 KB
Newer Older
Olivier Bronchain committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/* Spook Reference Implementation v1
 *
 * Written in 2019 at UCLouvain (Belgium) by Olivier Bronchain, Gaetan Cassiers
 * and Charles Momin.
 * To the extent possible under law, the author(s) have dedicated all copyright
 * and related and neighboring rights to this software to the public domain
 * worldwide. This software is distributed without any warranty.
 *
 * You should have received a copy of the CC0 Public Domain Dedication along
 * with this software. If not, see
 * <http://creativecommons.org/publicdomain/zero/1.0/>.
 */
#include <stdint.h>
#include <string.h>

#include "primitives.h"
#include "utils.h"

#define CLYDE_128_NS 6                // Number of steps
#define CLYDE_128_NR 2 * CLYDE_128_NS // Number of rounds
#define SHADOW_NS 6                   // Number of steps
#define SHADOW_NR 2 * SHADOW_NS       // Number of rounds

#define LS_ROWS 4      // Rows in the LS design
#define LS_ROW_BYTES 4 // number of bytes per row in the LS design
#define MLS_BUNDLES                                                            \
  (SHADOW_NBYTES / (LS_ROWS * LS_ROW_BYTES)) // Bundles in the mLS design

static void
sbox_layer(uint32_t* state);
static void
sbox_layer_inv(uint32_t* state);
static void
lbox(uint32_t* x, uint32_t* y);
static void
lbox_inv(uint32_t* x, uint32_t* y);
static void
lbox_layer(uint32_t* state);
static void
lbox_layer_inv(uint32_t* state);
static void
bytes2state(uint32_t* state, const unsigned char* byte);
static void
state2bytes(unsigned char* bytes, const uint32_t* state);
static void
xor_ls_state(uint32_t* state, const uint32_t* x);
static void
add_rc(uint32_t state[LS_ROWS], unsigned int round);
static void
tweakey(unsigned char tk[3][CLYDE128_NBYTES],
        const unsigned char* k,
        const unsigned char* t);
static uint32_t
update_lfsr(uint32_t lfsr);
static uint32_t
xtime(uint32_t x);
static void
dbox_mls_layer(uint32_t state[MLS_BUNDLES][LS_ROWS]);

// Round constants for Clyde-128
static const uint32_t clyde128_rc[CLYDE_128_NR][LS_ROWS] = {
  { 1, 0, 0, 0 }, // 0
  { 0, 1, 0, 0 }, // 1
  { 0, 0, 1, 0 }, // 2
  { 0, 0, 0, 1 }, // 3
  { 1, 1, 0, 0 }, // 4
  { 0, 1, 1, 0 }, // 5
  { 0, 0, 1, 1 }, // 6
  { 1, 1, 0, 1 }, // 7
  { 1, 0, 1, 0 }, // 8
  { 0, 1, 0, 1 }, // 9
  { 1, 1, 1, 0 }, // 10
  { 0, 1, 1, 1 }  // 11
};
static const uint32_t CST_LFSR_POLY_MASK = 0xc5;
// Initial value of the constant generation polynomial
// This is the result of applying the LFSR function 1024 times
// the value 0x1.
static const uint32_t CST_LFSR_INIT_VALUE = 0xf8737400;
// Row on which to XOR the constant in Shadow Round A
static const uint32_t SHADOW_RA_CST_ROW = 1;
// Bundle on which to XOR the constant in Shadow Round B
static const uint32_t SHADOW_RB_CST_BUNDLE = 0;

// Apply a S-box layer to a Clyde-128 state.
static void
sbox_layer(uint32_t* state)
{
  uint32_t y1 = (state[0] & state[1]) ^ state[2];
  uint32_t y0 = (state[3] & state[0]) ^ state[1];
  uint32_t y3 = (y1 & state[3]) ^ state[0];
  uint32_t y2 = (y0 & y1) ^ state[3];
  state[0] = y0;
  state[1] = y1;
  state[2] = y2;
  state[3] = y3;
}

// Apply a inverse S-box layer to a Clyde-128 state.
static void
sbox_layer_inv(uint32_t* state)
{
  uint32_t y3 = (state[0] & state[1]) ^ state[2];
  uint32_t y0 = (state[1] & y3) ^ state[3];
  uint32_t y1 = (y3 & y0) ^ state[0];
  uint32_t y2 = (y0 & y1) ^ state[1];
  state[0] = y0;
  state[1] = y1;
  state[2] = y2;
  state[3] = y3;
}

// Apply a L-box to a pair of Clyde-128 rows.
static void
lbox(uint32_t* x, uint32_t* y)
{
  uint32_t a, b, c, d;
  a = *x ^ rotr(*x, 12);
  b = *y ^ rotr(*y, 12);
  a = a ^ rotr(a, 3);
  b = b ^ rotr(b, 3);
  a = a ^ rotr(*x, 17);
  b = b ^ rotr(*y, 17);
  c = a ^ rotr(a, 31);
  d = b ^ rotr(b, 31);
  a = a ^ rotr(d, 26);
  b = b ^ rotr(c, 25);
  a = a ^ rotr(c, 15);
  b = b ^ rotr(d, 15);
  *x = a;
  *y = b;
}

// Apply a inverse L-box to a pair of Clyde-128 rows.
static void
lbox_inv(uint32_t* x, uint32_t* y)
{
  uint32_t a, b, c, d;
  a = *x ^ rotr(*x, 25);
  b = *y ^ rotr(*y, 25);
  c = *x ^ rotr(a, 31);
  d = *y ^ rotr(b, 31);
  c = c ^ rotr(a, 20);
  d = d ^ rotr(b, 20);
  a = c ^ rotr(c, 31);
  b = d ^ rotr(d, 31);
  c = c ^ rotr(b, 26);
  d = d ^ rotr(a, 25);
  a = a ^ rotr(c, 17);
  b = b ^ rotr(d, 17);
  a = rotr(a, 16);
  b = rotr(b, 16);
  *x = a;
  *y = b;
}

// Apply a L-box layer to a Clyde-128 state.
static void
lbox_layer(uint32_t* state)
{
  lbox(&state[0], &state[1]);
  lbox(&state[2], &state[3]);
}

// Apply inverse L-box layer to a Clyde-128 state.
static void
lbox_layer_inv(uint32_t* state)
{
  lbox_inv(&state[0], &state[1]);
  lbox_inv(&state[2], &state[3]);
}

// Convert bytes to a Clyde-128 state. Bytes are in ordered by row (first-row
// first), and in little-endian order inside a row.
static void
bytes2state(uint32_t* state, const unsigned char* bytes)
{
  for (unsigned int row = 0; row < LS_ROWS; row++) {
    state[row] = le32u_dec(bytes + 4 * row);
  }
}

// Convert Clyde-128 state to bytes. Bytes are in ordered by row (first-row
// first), and in little-endian order inside a row.
static void
state2bytes(unsigned char* bytes, const uint32_t* state)
{
  for (unsigned int row = 0; row < LS_ROWS; row++) {
    le32u_enc(bytes + 4 * row, state[row]);
  }
}

// XOR the Clyde-128 state x into state.
static void
xor_ls_state(uint32_t* state, const uint32_t* x)
{
  for (unsigned int i = 0; i < LS_ROWS; i++) {
    state[i] ^= x[i];
  }
}

// XOR the Clyde-128 round constant of given round into state, left shifting
// each constant by shift.
static void
add_rc(uint32_t state[LS_ROWS], unsigned int round)
{
  for (unsigned int i = 0; i < LS_ROWS; i++) {
    state[i] ^= clyde128_rc[round][i];
  }
}

// Key schedule for Clyde-128. Generate 3 Clyde-128 states from key k and tweak
// t.
static void
tweakey(unsigned char tk[3][CLYDE128_NBYTES],
        const unsigned char* k,
        const unsigned char* t)
{
  const unsigned char* t0 = t;
  const unsigned char* t1 = t + CLYDE128_NBYTES / 2;
  unsigned char tx[CLYDE128_NBYTES / 2];
  xor_bytes(tx, t0, t1, CLYDE128_NBYTES / 2);
  // TK[0]
  xor_bytes(tk[0], k, t, CLYDE128_NBYTES);
  // TK[1]
  xor_bytes(tk[1], k, tx, CLYDE128_NBYTES / 2);
  xor_bytes(tk[1] + CLYDE128_NBYTES / 2,
            k + CLYDE128_NBYTES / 2,
            t0,
            CLYDE128_NBYTES / 2);
  // TK[2]
  xor_bytes(tk[2], k, t1, CLYDE128_NBYTES / 2);
  xor_bytes(tk[2] + CLYDE128_NBYTES / 2,
            k + CLYDE128_NBYTES / 2,
            tx,
            CLYDE128_NBYTES / 2);
}

// Update (by 1 step) the constant generation LFSR
static uint32_t
update_lfsr(uint32_t lfsr)
{
  // Arithmetic shift left, equivalent to
  // uint32_t b_out_ext = (lfsr & 0x80000000) ? 0xffffffff : 0x0;
  // but constant-time.
  uint32_t b_out_ext = (uint32_t)(((int32_t)lfsr) >> 31);
  return (lfsr << 1) ^ (b_out_ext & CST_LFSR_POLY_MASK);
}

// Multiplication by polynomial x modulo x^32+x^8+1
static uint32_t
xtime(uint32_t x)
{
  uint32_t b = x >> 31;
  return (x << 1) ^ b ^ (b << 8);
}

// Apply a D-box layer to a Shadow state.
static void
dbox_mls_layer(uint32_t state[MLS_BUNDLES][LS_ROWS])
{
  for (unsigned int row = 0; row < LS_ROWS; row++) {
#if SMALL_PERM
    uint32_t x0 = state[0][row];
    uint32_t x1 = state[1][row];
    uint32_t x2 = state[2][row];
    uint32_t a = x0 ^ x1;
    uint32_t b = x0 ^ x2;
    uint32_t c = x1 ^ b;
    uint32_t d = a ^ xtime(b);
    state[0][row] = b ^ d;
    state[1][row] = c;
    state[2][row] = d;
#else
    state[0][row] ^= state[1][row];
    state[2][row] ^= state[3][row];
    state[1][row] ^= state[2][row];
    state[3][row] ^= xtime(state[0][row]);
    state[1][row] = xtime(state[1][row]);
    state[0][row] ^= state[1][row];
    state[2][row] ^= xtime(state[3][row]);
    state[1][row] ^= state[2][row];
    state[3][row] ^= state[0][row];
#endif // SMALL_PERM
  }
}

// Clyde-128 TBC.
// Output in buffer c the TBC for block m, tweak t and key k.
// All buffers have length CLYDE128_NBYTES.
void
clyde128_encrypt(unsigned char* c,
                 const unsigned char* m,
                 const unsigned char* t,
                 const unsigned char* k)
{
  // Key schedule
  unsigned char tkb[3][CLYDE128_NBYTES];
  uint32_t tk[3][LS_ROWS];
  tweakey(tkb, k, t);
  bytes2state(tk[0], tkb[0]);
  bytes2state(tk[1], tkb[1]);
  bytes2state(tk[2], tkb[2]);

  // Datapath
  uint32_t state[LS_ROWS];
  bytes2state(state, m);
  xor_ls_state(state, tk[0]);
  for (unsigned int s = 0; s < CLYDE_128_NS; s++) {
    for (unsigned int rho = 0; rho < 2; rho++) {
      unsigned int r = 2 * s + rho;
      sbox_layer(state);
      lbox_layer(state);
      add_rc(state, r);
    }
    xor_ls_state(state, tk[(s + 1) % 3]);
  }

  state2bytes(c, state);
}

// Clyde-128 inverse TBC.
// Output in buffer m the inverse TBC for block c, tweak t and key k.
// All buffers have length CLYDE128_NBYTES.
void
clyde128_decrypt(unsigned char* m,
                 const unsigned char* c,
                 const unsigned char* t,
                 const unsigned char* k)
{
  // Key schedule
  unsigned char tkb[3][CLYDE128_NBYTES];
  uint32_t tk[3][LS_ROWS];
  tweakey(tkb, k, t);
  bytes2state(tk[0], tkb[0]);
  bytes2state(tk[1], tkb[1]);
  bytes2state(tk[2], tkb[2]);

  // Datapath
  uint32_t state[LS_ROWS];
  bytes2state(state, c);
  for (int s = CLYDE_128_NS - 1; s >= 0; s--) {
    xor_ls_state(state, tk[(s + 1) % 3]);
    for (int rho = 1; rho >= 0; rho--) {
      unsigned int r = 2 * s + rho;
      add_rc(state, r);
      lbox_layer_inv(state);
      sbox_layer_inv(state);
    }
  }
  xor_ls_state(state, tk[0]);
  state2bytes(m, state);
}

// Shadow permutation. Updates x (array of SHADOW_NBYTES bytes).
void
shadow(unsigned char* x)
{
  uint32_t state[MLS_BUNDLES][LS_ROWS];
  uint32_t lfsr = CST_LFSR_INIT_VALUE;
  for (unsigned int b = 0; b < MLS_BUNDLES; b++) {
    bytes2state(state[b], x + (b * SHADOW_NBYTES / MLS_BUNDLES));
  }
  for (unsigned int s = 0; s < SHADOW_NS; s++) {
    for (unsigned int b = 0; b < MLS_BUNDLES; b++) {
      sbox_layer(state[b]);
      lbox_layer(state[b]);
      state[b][SHADOW_RA_CST_ROW] ^= lfsr;
      lfsr = update_lfsr(lfsr);
      sbox_layer(state[b]);
    }
    dbox_mls_layer(state);
    for (unsigned int row = 0; row < LS_ROWS; row++) {
      state[SHADOW_RB_CST_BUNDLE][row] ^= lfsr;
      lfsr = update_lfsr(lfsr);
    }
  }
  for (unsigned int b = 0; b < MLS_BUNDLES; b++) {
    state2bytes(x + (b * SHADOW_NBYTES / MLS_BUNDLES), state[b]);
  }
}