grain128aead.c 11.6 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * The reference implementation of Grain128-AEAD.
 * 
 * Note that this implementation is *not* meant to be run in software.
 * It is written to be as close to a hardware implementation as possible,
 * hence it should not be used in benchmarks due to bad performance.
 *
 * Since the optimized version reads the LSB first of a byte, we here perform
 * that transformation of all user provided buffers in order to generate
 * the same test vectors.
 *
 * Jonathan Sönnerup
 * 2019
 */

#include <stdlib.h>
#include <string.h>

#include "grain128aead.h"

unsigned char grain_round;

unsigned char swapsb(unsigned char n);

void init_grain(grain_state *grain, const unsigned char *key, const unsigned char *iv)
{
	// expand the packed bytes and place one bit per array cell (like a flip flop in HW)
	for (int i = 0; i < 12; i++) {
		for (int j = 0; j < 8; j++) {
			grain->lfsr[8 * i + j] = (iv[i] & (1 << (7-j))) >> (7-j);

		}
	}

	for (int i = 96; i < 127; i++) {
		grain->lfsr[i] = 1;
	}

	grain->lfsr[127] = 0;

	for (int i = 0; i < 16; i++) {
		for (int j = 0; j < 8; j++) {
			grain->nfsr[8 * i + j] = (key[i] & (1 << (7-j))) >> (7-j);
		}
	}

	for (int i = 0; i < 64; i++) {
		grain->auth_acc[i] = 0;
		grain->auth_sr[i] = 0;
	}

	/* initialize grain and skip output */
	grain_round = INIT;
	for (int i = 0; i < 256; i++) {
		next_z(grain, 0);
	}

	grain_round = ADDKEY;

	unsigned char key_idx = 0;
	/* inititalize the accumulator and shift reg. using the first 64 bits */
	for (int i = 0; i < 8; i++) {
		for (int j = 0; j < 8; j++) {
			unsigned char addkey_fb = (key[key_idx] & (1 << (7-j))) >> (7-j);
			grain->auth_acc[8 * i + j] = next_z(grain, addkey_fb);
		}
		key_idx++;
	}

	for (int i = 0; i < 8; i++) {
		for (int j = 0; j < 8; j++) {
			unsigned char addkey_fb = (key[key_idx] & (1 << (7-j))) >> (7-j);
			grain->auth_sr[8 * i + j] = next_z(grain, addkey_fb);
		}
		key_idx++;
	}

	grain_round = NORMAL;
}

void init_data(grain_data *data, const unsigned char *msg, unsigned long long msg_len)
{
	// allocate enough space for message, including the padding bit 1 (byte 0x80)
	data->message = (unsigned char *) calloc(8 * msg_len + 1, 1);
	data->msg_len = 8 * msg_len + 1;
	for (unsigned long long i = 0; i < msg_len; i++) {
		for (int j = 0; j < 8; j++) {
			data->message[8 * i + j] = (msg[i] & (1 << (7-j))) >> (7-j);
		}
	}

	// always pad data with the bit 1 (byte 0x80)
	data->message[data->msg_len - 1] = 1;
}

unsigned char next_lfsr_fb(grain_state *grain)
{
 	/* f(x) = 1 + x^32 + x^47 + x^58 + x^90 + x^121 + x^128 */
	return grain->lfsr[96] ^ grain->lfsr[81] ^ grain->lfsr[70] ^ grain->lfsr[38] ^ grain->lfsr[7] ^ grain->lfsr[0];
}

unsigned char next_nfsr_fb(grain_state *grain)
{
	return grain->nfsr[96] ^ grain->nfsr[91] ^ grain->nfsr[56] ^ grain->nfsr[26] ^ grain->nfsr[0] ^ (grain->nfsr[84] & grain->nfsr[68]) ^
			(grain->nfsr[67] & grain->nfsr[3]) ^ (grain->nfsr[65] & grain->nfsr[61]) ^ (grain->nfsr[59] & grain->nfsr[27]) ^
			(grain->nfsr[48] & grain->nfsr[40]) ^ (grain->nfsr[18] & grain->nfsr[17]) ^ (grain->nfsr[13] & grain->nfsr[11]) ^
			(grain->nfsr[82] & grain->nfsr[78] & grain->nfsr[70]) ^ (grain->nfsr[25] & grain->nfsr[24] & grain->nfsr[22]) ^
			(grain->nfsr[95] & grain->nfsr[93] & grain->nfsr[92] & grain->nfsr[88]);
}

unsigned char next_h(grain_state *grain)
{
	// h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8
	#define x0 grain->nfsr[12]	// bi+12
	#define x1 grain->lfsr[8]		// si+8
	#define x2 grain->lfsr[13]	// si+13
	#define x3 grain->lfsr[20]	// si+20
	#define x4 grain->nfsr[95]	// bi+95
	#define x5 grain->lfsr[42]	// si+42
	#define x6 grain->lfsr[60]	// si+60
	#define x7 grain->lfsr[79]	// si+79
	#define x8 grain->lfsr[94]	// si+94

	unsigned char h_out = (x0 & x1) ^ (x2 & x3) ^ (x4 & x5) ^ (x6 & x7) ^ (x0 & x4 & x8);
	return h_out;
}

unsigned char shift(unsigned char fsr[128], unsigned char fb)
{
	unsigned char out = fsr[0];
	for (int i = 0; i < 127; i++) {
		fsr[i] = fsr[i+1];
	}
	fsr[127] = fb;

	return out;
}

void auth_shift(unsigned char sr[64], unsigned char fb)
{
	for (int i = 0; i < 63; i++) {
		sr[i] = sr[i+1];
	}
	sr[63] = fb;
}

void accumulate(grain_state *grain)
{
	for (int i = 0; i < 64; i++) {
		grain->auth_acc[i] ^= grain->auth_sr[i];
	}
}

unsigned char next_z(grain_state *grain, unsigned char keybit)
{
	unsigned char lfsr_fb = next_lfsr_fb(grain);
	unsigned char nfsr_fb = next_nfsr_fb(grain);
	unsigned char h_out = next_h(grain);

	/* y = h + s_{i+93} + sum(b_{i+j}), j \in A */
	unsigned char A[] = {2, 15, 36, 45, 64, 73, 89};

	unsigned char nfsr_tmp = 0;
	for (int i = 0; i < 7; i++) {
		nfsr_tmp ^= grain->nfsr[A[i]];
	}

	unsigned char y = h_out ^ grain->lfsr[93] ^ nfsr_tmp;
	
	unsigned char lfsr_out;

	/* feedback y if we are in the initialization instance */
	if (grain_round == INIT) {
		lfsr_out = shift(grain->lfsr, lfsr_fb ^ y);
		shift(grain->nfsr, nfsr_fb ^ lfsr_out ^ y);
	} else if (grain_round == ADDKEY) {
		lfsr_out = shift(grain->lfsr, lfsr_fb ^ keybit);
		shift(grain->nfsr, nfsr_fb ^ lfsr_out);
	} else if (grain_round == NORMAL) {
		lfsr_out = shift(grain->lfsr, lfsr_fb);
		shift(grain->nfsr, nfsr_fb ^ lfsr_out);
	}

	return y;
}

int encode_der(unsigned long long len, unsigned char **der)
{
	unsigned long long len_tmp;
	int der_len = 0;

	if (len < 128) {
		*der = malloc(1);
		(*der)[0] = swapsb((unsigned char) len);
		return 1;
	}

	len_tmp = len;
	do {
		len_tmp >>= 8;
		der_len++;
	} while (len_tmp != 0);

	// one extra byte to describe the number of bytes used
	*der = malloc(der_len + 1);
	(*der)[0] = swapsb(0x80 | der_len);

	len_tmp = len;
	for (int i = der_len; i > 0; i--) {
		(*der)[i] = swapsb(len_tmp & 0xff);
		len_tmp >>= 8;
	}

	return der_len + 1;
}

unsigned char swapsb(unsigned char n)
{
	// swaps significant bit
	unsigned char val = 0;
	for (int i = 0; i < 8; i++) {
		val |= ((n >> i) & 1) << (7-i);
	}
	return val;
}


int crypto_aead_encrypt(unsigned char *c, unsigned long long *clen,
	const unsigned char *mp, unsigned long long mlen,
	const unsigned char *adp, unsigned long long adlen,
	const unsigned char *nsec,
	const unsigned char *npubp,
	const unsigned char *kp
	)
{
	/* This implementation assumes that the most significant bit is processed first,
	 * in a byte. The optimized version however, processes the lsb first.
	 * In order to give the same test vectors, we here change the interpretation of the bits.
	 */
	unsigned char *m = malloc(mlen);
	unsigned char *ad = malloc(adlen);
	unsigned char npub[12];
	unsigned char k[16];

	for (unsigned long long i = 0; i < mlen; i++) {
		m[i] = swapsb(mp[i]);
	}
	for (unsigned long long i = 0; i < adlen; i++) {
		ad[i] = swapsb(adp[i]);
	}
	for (unsigned long long i = 0; i < 12; i++) {
		npub[i] = swapsb(npubp[i]);
	}
	for (unsigned long long i = 0; i < 16; i++) {
		k[i] = swapsb(kp[i]);
	}

	grain_state grain;
	grain_data data;

	init_grain(&grain, k, npub);
	init_data(&data, m, mlen);

	*clen = 0;

	// authenticate adlen by prepeding to ad, using DER encoding
	unsigned char *ader;
	int aderlen = encode_der(adlen, &ader);
	// append ad to buffer
	ader = realloc(ader, aderlen + adlen);
	memcpy(ader + aderlen, ad, adlen);

	unsigned long long ad_cnt = 0;
	unsigned char adval = 0;

	/* accumulate tag for associated data only */
	for (unsigned long long i = 0; i < aderlen + adlen; i++) {
		/* every second bit is used for keystream, the others for MAC */
		for (int j = 0; j < 16; j++) {
			unsigned char z_next = next_z(&grain, 0);
			if (j % 2 == 0) {
				// do not encrypt
			} else {
				adval = ader[ad_cnt / 8] & (1 << (7 - (ad_cnt % 8)));
				if (adval) {
					accumulate(&grain);
				}
				auth_shift(grain.auth_sr, z_next);
				ad_cnt++;
			}
		}
	}

	free(ader);

	unsigned long long ac_cnt = 0;
	unsigned long long m_cnt = 0;
	unsigned long long c_cnt = 0;
	unsigned char cc = 0;

	// generate keystream for message
	for (unsigned long long i = 0; i < mlen; i++) {
		// every second bit is used for keystream, the others for MAC
		cc = 0;
		for (int j = 0; j < 16; j++) {
			unsigned char z_next = next_z(&grain, 0);
			if (j % 2 == 0) {
				// transform it back to 8 bits per byte
				cc |= (data.message[m_cnt++] ^ z_next) << (7 - (c_cnt % 8));
				c_cnt++;
			} else {
				if (data.message[ac_cnt++] == 1) {
					accumulate(&grain);
				}
				auth_shift(grain.auth_sr, z_next);
			}
		}
		c[i] = swapsb(cc);
		*clen += 1;
	}

	// generate unused keystream bit
	next_z(&grain, 0);
	// the 1 in the padding means accumulation
	accumulate(&grain);

	/* append MAC to ciphertext */
	unsigned long long acc_idx = 0;
	for (unsigned long long i = mlen; i < mlen + 8; i++) {
		unsigned char acc = 0;
		// transform back to 8 bits per byte
		for (int j = 0; j < 8; j++) {
			acc |= grain.auth_acc[8 * acc_idx + j] << (7 - j);
		}
		c[i] = swapsb(acc);
		acc_idx++;
		*clen += 1;
	}

	free(data.message);
	free(m);
	free(ad);

	return 0;
}

int crypto_aead_decrypt(
       unsigned char *m,unsigned long long *mlen,
       unsigned char *nsec,
       const unsigned char *cp,unsigned long long clen,
       const unsigned char *adp,unsigned long long adlen,
       const unsigned char *npubp,
       const unsigned char *kp
     )
{
	/* This implementation assumes that the most significant bit is processed first,
	 * in a byte. The optimized version however, processes the lsb first.
	 * In order to give the same test vectors, we here change the interpretation of the bits.
	 */
	unsigned char *c = malloc(clen);
	unsigned char *ad = malloc(adlen);
	unsigned char npub[12];
	unsigned char k[16];

	for (unsigned long long i = 0; i < clen; i++) {
		c[i] = swapsb(cp[i]);
	}
	for (unsigned long long i = 0; i < adlen; i++) {
		ad[i] = swapsb(adp[i]);
	}
	for (unsigned long long i = 0; i < 12; i++) {
		npub[i] = swapsb(npubp[i]);
	}
	for (unsigned long long i = 0; i < 16; i++) {
		k[i] = swapsb(kp[i]);
	}
	grain_state grain;
	grain_data data;

	init_grain(&grain, k, npub);
	init_data(&data, c, clen);

	*mlen = 0;
	
	// authenticate adlen by prepeding to ad, using DER encoding
	unsigned char *ader;
	int aderlen = encode_der(adlen, &ader);
	// append ad to buffer
	ader = realloc(ader, aderlen + adlen);
	memcpy(ader + aderlen, ad, adlen);

	unsigned long long ad_cnt = 0;
	unsigned char adval = 0;

	/* accumulate tag for associated data only */
	for (unsigned long long i = 0; i < aderlen + adlen; i++) {
		/* every second bit is used for keystream, the others for MAC */
		for (int j = 0; j < 16; j++) {
			unsigned char z_next = next_z(&grain, 0);
			if (j % 2 == 0) {
				// do not encrypt
			} else {
				adval = ader[ad_cnt / 8] & (1 << (7 - (ad_cnt % 8)));
				if (adval) {
					accumulate(&grain);
				}
				auth_shift(grain.auth_sr, z_next);
				ad_cnt++;
			}
		}
	}

	free(ader);

	unsigned long long ac_cnt = 0;
	unsigned long long c_cnt = 0;
	unsigned char msgbyte = 0;
	unsigned char msgbit = 0;

	// generate keystream for message, skipping tag
	for (unsigned long long i = 0; i < clen - 8; i++) {
		// every second bit is used for keystream, the others for MAC
		msgbyte = 0;
		for (int j = 0; j < 8; j++) {
			unsigned char z_next = next_z(&grain, 0);
			// decrypt ciphertext
			msgbit = data.message[c_cnt] ^ z_next;
			// transform it back to 8 bits per byte
			msgbyte |= msgbit << (7 - (c_cnt % 8));

			// generate accumulator bit
			z_next = next_z(&grain, 0);
			// use the decrypted message bit to control accumulator
			if (msgbit == 1) {
				accumulate(&grain);
			}
			auth_shift(grain.auth_sr, z_next);

			c_cnt++;
			ac_cnt++;
		}
		m[i] = swapsb(msgbyte);
		*mlen += 1;
	}


	// generate unused keystream bit
	next_z(&grain, 0);
	// the 1 in the padding means accumulation
	accumulate(&grain);

	// check MAC
	if (memcmp(grain.auth_acc, &data.message[8*(clen-8)], 64) != 0) {
		free(data.message);
		free(c);
		free(ad);
		return -1;
	}

	free(data.message);
	free(c);
	free(ad);

	return 0;
}