internal-xoodoo.c 5.2 KB
Newer Older
Rhys Weatherley committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Copyright (C) 2020 Southern Storm Software, Pty Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "internal-xoodoo.h"

#if !defined(__AVR__)

void xoodoo_permute(xoodoo_state_t *state)
{
    static uint16_t const rc[XOODOO_ROUNDS] = {
        0x0058, 0x0038, 0x03C0, 0x00D0, 0x0120, 0x0014,
        0x0060, 0x002C, 0x0380, 0x00F0, 0x01A0, 0x0012
    };
    uint8_t round;
    uint32_t x00, x01, x02, x03;
    uint32_t x10, x11, x12, x13;
    uint32_t x20, x21, x22, x23;
    uint32_t t1, t2;

    /* Load the state and convert from little-endian byte order */
#if defined(LW_UTIL_LITTLE_ENDIAN)
    x00 = state->S[0][0];
    x01 = state->S[0][1];
    x02 = state->S[0][2];
    x03 = state->S[0][3];
    x10 = state->S[1][0];
    x11 = state->S[1][1];
    x12 = state->S[1][2];
    x13 = state->S[1][3];
    x20 = state->S[2][0];
    x21 = state->S[2][1];
    x22 = state->S[2][2];
    x23 = state->S[2][3];
#else
    x00 = le_load_word32(state->B);
    x01 = le_load_word32(state->B + 4);
    x02 = le_load_word32(state->B + 8);
    x03 = le_load_word32(state->B + 12);
    x10 = le_load_word32(state->B + 16);
    x11 = le_load_word32(state->B + 20);
    x12 = le_load_word32(state->B + 24);
    x13 = le_load_word32(state->B + 28);
    x20 = le_load_word32(state->B + 32);
    x21 = le_load_word32(state->B + 36);
    x22 = le_load_word32(state->B + 40);
    x23 = le_load_word32(state->B + 44);
#endif

    /* Perform all permutation rounds */
    for (round = 0; round < XOODOO_ROUNDS; ++round) {
        /* Optimization ideas from the Xoodoo implementation here:
         * https://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo/Optimized */

        /* Step theta: Mix column parity */
        t1 = x03 ^ x13 ^ x23;
        t2 = x00 ^ x10 ^ x20;
        t1 = leftRotate5(t1) ^ leftRotate14(t1);
        t2 = leftRotate5(t2) ^ leftRotate14(t2);
        x00 ^= t1;
        x10 ^= t1;
        x20 ^= t1;
        t1 = x01 ^ x11 ^ x21;
        t1 = leftRotate5(t1) ^ leftRotate14(t1);
        x01 ^= t2;
        x11 ^= t2;
        x21 ^= t2;
        t2 = x02 ^ x12 ^ x22;
        t2 = leftRotate5(t2) ^ leftRotate14(t2);
        x02 ^= t1;
        x12 ^= t1;
        x22 ^= t1;
        x03 ^= t2;
        x13 ^= t2;
        x23 ^= t2;

        /* Step rho-west: Plane shift */
        t1 = x13;
        x13 = x12;
        x12 = x11;
        x11 = x10;
        x10 = t1;
        x20 = leftRotate11(x20);
        x21 = leftRotate11(x21);
        x22 = leftRotate11(x22);
        x23 = leftRotate11(x23);

        /* Step iota: Add the round constant to the state */
        x00 ^= rc[round];

        /* Step chi: Non-linear layer */
        x00 ^= (~x10) & x20;
        x10 ^= (~x20) & x00;
        x20 ^= (~x00) & x10;
        x01 ^= (~x11) & x21;
        x11 ^= (~x21) & x01;
        x21 ^= (~x01) & x11;
        x02 ^= (~x12) & x22;
        x12 ^= (~x22) & x02;
        x22 ^= (~x02) & x12;
        x03 ^= (~x13) & x23;
        x13 ^= (~x23) & x03;
        x23 ^= (~x03) & x13;

        /* Step rho-east: Plane shift */
        x10 = leftRotate1(x10);
        x11 = leftRotate1(x11);
        x12 = leftRotate1(x12);
        x13 = leftRotate1(x13);
        t1 = leftRotate8(x22);
        t2 = leftRotate8(x23);
        x22 = leftRotate8(x20);
        x23 = leftRotate8(x21);
        x20 = t1;
        x21 = t2;
    }

    /* Convert back into little-endian and store to the output state */
#if defined(LW_UTIL_LITTLE_ENDIAN)
    state->S[0][0] = x00;
    state->S[0][1] = x01;
    state->S[0][2] = x02;
    state->S[0][3] = x03;
    state->S[1][0] = x10;
    state->S[1][1] = x11;
    state->S[1][2] = x12;
    state->S[1][3] = x13;
    state->S[2][0] = x20;
    state->S[2][1] = x21;
    state->S[2][2] = x22;
    state->S[2][3] = x23;
#else
    le_store_word32(state->B,      x00);
    le_store_word32(state->B +  4, x01);
    le_store_word32(state->B +  8, x02);
    le_store_word32(state->B + 12, x03);
    le_store_word32(state->B + 16, x10);
    le_store_word32(state->B + 20, x11);
    le_store_word32(state->B + 24, x12);
    le_store_word32(state->B + 28, x13);
    le_store_word32(state->B + 32, x20);
    le_store_word32(state->B + 36, x21);
    le_store_word32(state->B + 40, x22);
    le_store_word32(state->B + 44, x23);
#endif
}

#endif /* !__AVR__ */