sparkle_ref.c 6.88 KB
Newer Older
Johann Großschädl committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
///////////////////////////////////////////////////////////////////////////////
// sparkle_ref.c: Reference C99 implementation of the SPARKLE permutation.   //
// This file is part of the SPARKLE submission to NIST's LW Crypto Project.  //
// Version 1.1.2 (2020-10-30), see <http://www.cryptolux.org/> for updates.  //
// Authors: The SPARKLE Group (C. Beierle, A. Biryukov, L. Cardoso dos       //
// Santos, J. Groszschaedl, L. Perrin, A. Udovenko, V. Velichkov, Q. Wang).  //
// License: GPLv3 (see LICENSE file), other licenses available upon request. //
// Copyright (C) 2019-2020 University of Luxembourg <http://www.uni.lu/>.    //
// ------------------------------------------------------------------------- //
// This program is free software: you can redistribute it and/or modify it   //
// under the terms of the GNU General Public License as published by the     //
// Free Software Foundation, either version 3 of the License, or (at your    //
// option) any later version. This program is distributed in the hope that   //
// it will be useful, but WITHOUT ANY WARRANTY; without even the implied     //
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the  //
// GNU General Public License for more details. You should have received a   //
// copy of the GNU General Public License along with this program. If not,   //
// see <http://www.gnu.org/licenses/>.                                       //
///////////////////////////////////////////////////////////////////////////////


#include <assert.h>
#include <stdio.h>
#include "sparkle_ref.h"


#define ROT(x, n) (((x) >> (n)) | ((x) << (32-(n))))
#define ELL(x) (ROT(((x) ^ ((x) << 16)), 16))


// 4-round ARX-box
#define ARXBOX(x, y, c)                     \
  (x) += ROT((y), 31), (y) ^= ROT((x), 24), \
  (x) ^= (c),                               \
  (x) += ROT((y), 17), (y) ^= ROT((x), 17), \
  (x) ^= (c),                               \
  (x) += (y),          (y) ^= ROT((x), 31), \
  (x) ^= (c),                               \
  (x) += ROT((y), 24), (y) ^= ROT((x), 16), \
  (x) ^= (c)


// Inverse of 4-round ARX-box
#define ARXBOX_INV(x, y, c)                 \
  (x) ^= (c),                               \
  (y) ^= ROT((x), 16), (x) -= ROT((y), 24), \
  (x) ^= (c),                               \
  (y) ^= ROT((x), 31), (x) -= (y),          \
  (x) ^= (c),                               \
  (y) ^= ROT((x), 17), (x) -= ROT((y), 17), \
  (x) ^= (c),                               \
  (y) ^= ROT((x), 24), (x) -= ROT((y), 31)


// Round constants
static const uint32_t RCON[MAX_BRANCHES] = {      \
  0xB7E15162, 0xBF715880, 0x38B4DA56, 0x324E7738, \
  0xBB1185EB, 0x4F7C7B57, 0xCFBFA1C8, 0xC2B3293D  \
};


void linear_layer(SparkleState *state, int brans)
{
  int i, b = brans/2;
  uint32_t *x = state->x, *y = state->y;
  uint32_t tmp;
  
  // Feistel function (adding to y part)
  tmp = 0;
  for(i = 0; i < b; i++)
    tmp ^= x[i];
  tmp = ELL(tmp);
  for(i = 0; i < b; i ++)
    y[i+b] ^= (tmp ^ y[i]);
  
  // Feistel function (adding to x part)
  tmp = 0;
  for(i = 0; i < b; i++)
    tmp ^= y[i];
  tmp = ELL(tmp);
  for(i = 0; i < b; i ++)
    x[i+b] ^= (tmp ^ x[i]);
  
  // Branch swap with 1-branch left-rotation of right side
  // <------- left side --------> <------- right side ------->
  //    0    1    2 ...  B-2  B-1    B  B+1  B+2 ... 2B-2 2B-1
  //  B+1  B+2  B+3 ... 2B-1    B    0    1    2 ...  B-2  B-1
  
  // Branch swap of the x part
  tmp = x[0];
  for (i = 0; i < b - 1; i++) {
    x[i] = x[i+b+1];
    x[i+b+1] = x[i+1];
  }
  x[b-1] = x[b];
  x[b] = tmp;
  
  // Branch swap of the y part
  tmp = y[0];
  for (i = 0; i < b - 1; i++) {
    y[i] = y[i+b+1];
    y[i+b+1] = y[i+1];
  }
  y[b-1] = y[b];
  y[b] = tmp;
}


void sparkle_ref(SparkleState *state, int brans, int steps)
{
  int i, j;  // Step and branch counter
  
  // The number of branches must be even and not bigger than MAX_BRANCHES.
  assert(((brans & 1) == 0) && (brans >= 4) && (brans <= MAX_BRANCHES));
  
  for(i = 0; i < steps; i++) {
    // Add step counter
    state->y[0] ^= RCON[i%MAX_BRANCHES];
    state->y[1] ^= i;
    // ARXBox layer
    for(j = 0; j < brans; j ++)
      ARXBOX(state->x[j], state->y[j], RCON[j]);
    // Linear layer
    linear_layer(state, brans);
  }
}


void linear_layer_inv(SparkleState *state, int brans)
{
  int i, b = brans/2;
  uint32_t *x = state->x, *y = state->y;
  uint32_t tmp;
  
  // Branch swap with 1-branch right-rotation of left side
  // <------- left side --------> <------- right side ------->
  //    0    1    2 ...  B-2  B-1    B  B+1  B+2 ... 2B-2 2B-1
  //    B  B+1  B+2 ... 2B-2 2B-1  B-1    0    1 ...  B-3  B-2
  
  // Branch swap of the x part
  tmp = x[b-1];
  for (i = b - 1; i > 0; i--) {
    x[i] = x[i+b];
    x[i+b] = x[i-1];
  }
  x[0] = x[b];
  x[b] = tmp;
  
  // Branch swap of the y part
  tmp = y[b-1];
  for (i = b - 1; i > 0; i--) {
    y[i] = y[i+b];
    y[i+b] = y[i-1];
  }
  y[0] = y[b];
  y[b] = tmp;
  
  // Feistel function (adding to x part)
  tmp = 0;
  for(i = 0; i < b; i ++)
    tmp ^= y[i];
  tmp = ELL(tmp);
  for(i = 0; i < b; i ++)
    x[i+b] ^= (tmp ^ x[i]);
  
  // Feistel function (adding to y part)
  tmp = 0;
  for(i = 0; i < b; i ++)
    tmp ^= x[i];
  tmp = ELL(tmp);
  for(i = 0; i < b; i ++)
    y[i+b] ^= (tmp ^ y[i]);
}


void sparkle_inv_ref(SparkleState *state, int brans, int steps)
{
  int i, j;  // Step and branch counter
  
  // The number of branches must be even and not bigger than MAX_BRANCHES.
  assert(((brans & 1) == 0) && (brans >= 4) && (brans <= MAX_BRANCHES));
  
  for(i = steps - 1; i >= 0; i--) {
    // Linear layer
    linear_layer_inv(state, brans);
    // ARXbox layer
    for(j = 0; j < brans; j ++)
      ARXBOX_INV(state->x[j], state->y[j], RCON[j]);
    // Add step counter
    state->y[1] ^= i;
    state->y[0] ^= RCON[i%MAX_BRANCHES];
  }
}


void clear_state_ref(SparkleState *state, int brans)
{
  int i;
  
  for (i = 0; i < brans; i ++) {
    state->x[i] = state->y[i] = 0;
  }
}


void print_state_ref(const SparkleState *state, int brans)
{
  uint8_t *xbytes = (uint8_t *) state->x;
  uint8_t *ybytes = (uint8_t *) state->y;
  int i, j;
  
  for (i = 0; i < brans; i ++) {
    j = 4*i;
    printf("(%02x%02x%02x%02x %02x%02x%02x%02x)",     \
    xbytes[j], xbytes[j+1], xbytes[j+2], xbytes[j+3], \
    ybytes[j], ybytes[j+1], ybytes[j+2], ybytes[j+3]);
    if (i < brans-1) printf(" ");
  }
  printf("\n");
}


void test_sparkle_ref(int brans, int steps)
{
  SparkleState state = {{0}, {0}};
  
  printf("input:\n");
  print_state_ref(&state, brans);
  sparkle_ref(&state, brans, steps);
  printf("sparkle:\n");
  print_state_ref(&state, brans);
  sparkle_inv_ref(&state, brans, steps);
  printf("sparkle inv:\n");
  print_state_ref(&state, brans);
  printf("\n");
}