encrypt.c 9.48 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326


/* Reference implementation of SPIX-128 AEAD
   Written by:
   Kalikinkar Mandal <kmandal@uwaterloo.ca>
*/

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<stdint.h>

#include "sliscp_light256.h"
#include "crypto_aead.h" 
#include "api.h" 

#define KAT_SUCCESS          0
#define KAT_FILE_OPEN_ERROR -1
#define KAT_DATA_ERROR      -3
#define KAT_CRYPTO_FAILURE  -4

const unsigned char rate_bytes256[8] = {8,9,10,11,24,25,26,27};

int spix_init(
			unsigned char *state, 
			const unsigned char *npub,
			const unsigned char *k
			)
{
	unsigned char i;

	// Initialize the state to all-ZERO 
	for ( i = 0; i < STATEBYTES; i++ )
		state[i] = 0x0;
		
	if ( CRYPTO_KEYBYTES == 16 && CRYPTO_NPUBBYTES == 16 )
	{
		//Assigning nonce
		for ( i = 0; i < 8; i++ )
			state[i] = npub[i];
		for ( i = 0; i < 8; i++ )
			state[16+i] = npub[8+i];

		//Initial assignment of Key
		for ( i = 0; i < 8; i++ )
			state[8+i] = k[i];
		for ( i = 0; i < 8; i++ )
			state[24+i] = k[8+i];
		
		sliscp_permutation256r18(state );

		for ( i = 0; i < 8; i++ )
			state[rate_bytes256[i]]^=k[i];

		sliscp_permutation256r18(state);

		for ( i = 0; i < 8; i++ )
			state[rate_bytes256[i]]^=k[8+i];

		sliscp_permutation256r18(state);
	}
	else
	{
		return KAT_CRYPTO_FAILURE;
	}
return KAT_SUCCESS;
}

int spix_ad(
             unsigned char *state,
             const unsigned char *ad,
             const u64 adlen
		     )
{
	unsigned char i, lblen;
	u64 j, ad64len = adlen/8;
	lblen = (unsigned char)(adlen%8);

	if ( adlen == 0 )
		return(KAT_SUCCESS);
        
        //Absorbing associated data
        if ( adlen != 0 )
        {
                for ( j = 0; j < ad64len; j++ )
                {
                        for ( i = 0; i < 8; i++ )
                                state[rate_bytes256[i]]^=ad[8*j+((u64)i)];
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x01);
                        sliscp_permutation256r9(state);
                }

                //Process the last 64-bit block if "adlen" is not multiple of 8
                if ( lblen != 0 )
                {
                        for ( i = 0; i < lblen; i++ )
                                state[rate_bytes256[i]]^=ad[ad64len*8+(u64)i];
                        state[rate_bytes256[lblen]]^=(0x80); // Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x01);
                        sliscp_permutation256r9(state );
                }
        }

return (KAT_SUCCESS);
}

int spix_gentag(
                unsigned char *tag,
                const unsigned char tlen,
                unsigned char *state,
                const unsigned char *k
                )
{
        unsigned char i;
        if ( CRYPTO_KEYBYTES == 16 && tlen == 16 )
        {
                for ( i = 0; i < 8; i++ )
                        state[rate_bytes256[i]]^=k[i];
                sliscp_permutation256r18(state );
                
                for ( i = 0; i < 8; i++ )
                        state[rate_bytes256[i]]^=k[8+i];
                sliscp_permutation256r18(state);
                
                //Extracting 128-bit tag from X1 and X3
                for ( i = 0; i < 8; i++ )
                {
                        tag[i] = state[8+i];
                        tag[8+i] = state[24+i];
                }
        }
        else
        {
                printf("Invalid key and tag length pair.\n");
                return KAT_CRYPTO_FAILURE;
        }
        return KAT_SUCCESS;
}

int crypto_aead_encrypt(
			unsigned char *c,unsigned long long *clen,
			const unsigned char *m,unsigned long long mlen,
			const unsigned char *ad,unsigned long long adlen,
			const unsigned char *nsec,
			const unsigned char *npub,
			const unsigned char *k
			)
{
	unsigned char *state;
	unsigned char *tag;
	unsigned char i, lblen;
	u64 j, m64len;

	m64len = mlen/8;
	lblen = (unsigned char)(mlen%8);

	state = (unsigned char *)malloc(sizeof(unsigned char)*STATEBYTES);
	tag = (unsigned char *)malloc(sizeof(unsigned char)*CRYPTO_ABYTES);

	//Initialize state with "key" and "nonce" and then absorbe "key" again
	if ( spix_init (state, npub, k)!= KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);

	//Absorbing "ad"
        if ( adlen != 0 )
        {
                if ( spix_ad( state, ad, adlen) != KAT_SUCCESS)
                        return(KAT_CRYPTO_FAILURE);
        }

	//Encrypting "message(m)" and producing "ciphertext (c)"
        if ( mlen != 0 )
        {
                for ( j = 0; j < m64len; j++ )
                {
                        for ( i = 0; i < 8; i++ )
                        {
                                c[8*j+((u64)i)] = m[8*j+((u64)i)]^state[rate_bytes256[i]];
                                state[rate_bytes256[i]] = c[8*j+((u64)i)];
                        }
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }

                if ( lblen != 0 )
                {
                        //Encrypting the padded 64-bit block when "mlen" is not a multiple of 8
                        for ( i = 0; i < lblen; i++ )
                        {
                                c[8*m64len+((u64)i)]=m[8*m64len+((u64)i)]^state[rate_bytes256[i]];
                                state[rate_bytes256[i]]=c[8*m64len+((u64)i)];
                        }
                        state[rate_bytes256[lblen]]^=(0x80);// Padding: 10*
                       
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
                else
                {
                        state[rate_bytes256[0]]^=(0x80);// Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
        }
        else
        {
                state[rate_bytes256[0]]^=(0x80);// Padding: 10*
                //Domain seperator
                state[STATEBYTES-1]^=(0x02);
                sliscp_permutation256r9(state);
        }
        
        //Appending tag to the end of ciphertext
	if ( spix_gentag ( tag, CRYPTO_ABYTES, state, k ) != KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);
        else
        {
                for ( i = 0; i < CRYPTO_ABYTES; i++ )
                        c[mlen+(u64)i] = tag[i];
        }
	*clen = mlen+CRYPTO_ABYTES;

	free(state);
	free(tag);
return KAT_SUCCESS;
}

int crypto_aead_decrypt(
			unsigned char *m,unsigned long long *mlen,
			unsigned char *nsec,
			const unsigned char *c,unsigned long long clen,
			const unsigned char *ad,unsigned long long adlen,
			const unsigned char *npub,
			const unsigned char *k
			)
{
	unsigned char i, lblen;
	u64 j, clen1, c64len;
        clen1 = clen - CRYPTO_ABYTES;
        c64len = clen1/8;
	lblen = (unsigned char)(clen1%8);
	
	unsigned char *state;
	unsigned char *tag;

	state = (unsigned char *)malloc(sizeof(unsigned char)*STATEBYTES);
	tag = (unsigned char *)malloc(sizeof(unsigned char)*CRYPTO_ABYTES);

	//Initialize state with "key" and "nonce" and then absorbe "key" again
	if ( spix_init (state, npub, k)!= KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);

	//Absorbing "ad"
        if ( adlen != 0 )
        {
                if ( spix_ad( state, ad, adlen) != KAT_SUCCESS)
                        return(KAT_CRYPTO_FAILURE);
        }

        if ( clen1 != 0 )
        {
                for ( j = 0; j < c64len; j++ )
                {
                        for ( i = 0; i < 8; i++ )
                        {
                                m[8*j+((u64)i)] = c[8*j+((u64)i)]^state[rate_bytes256[i]];
                                state[rate_bytes256[i]] = c[8*j+((u64)i)];
                        }
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }

                if ( lblen != 0 )
                {
                        //Decrypting last 64-bit block
                        for ( i = 0; i < lblen; i++ )
                        {
                                m[8*c64len +((u64)i)]=c[8*c64len +((u64)i)]^state[rate_bytes256[i]];
                                state[rate_bytes256[i]]=c[8*c64len +((u64)i)];
                        }
                        state[rate_bytes256[lblen]]^=(0x80); //Padding: 10*

                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
                else
                {
                        state[rate_bytes256[0]]^=(0x80); //Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
        }
        else
        {
                state[rate_bytes256[0]]^=(0x80); //Padding: 10*
                //Domain seperator
                state[STATEBYTES-1]^=(0x02);
                sliscp_permutation256r9(state);
        }
	
        //Generating and verifying the tag
	if ( spix_gentag ( tag, CRYPTO_ABYTES, state, k ) != KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);
        else
        {
                for ( i = 0; i < CRYPTO_ABYTES; i++ )
                {
                        if ( c[clen1 + (u64)i] != tag[i] )
                                return(KAT_CRYPTO_FAILURE);
                }
        }
	*mlen = clen-CRYPTO_ABYTES;

	free(state);
	free(tag);
	
return KAT_SUCCESS;
}