tbc.py 3.46 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
# Implementation of the Lilliput-AE tweakable block cipher.
#
# Authors, hereby denoted as "the implementer":
#     Kévin Le Gouguec,
#     Léo Reynaud
#     2019.
#
# For more information, feedback or questions, refer to our website:
# https://paclido.fr/lilliput-ae
#
# To the extent possible under law, the implementer has waived all copyright
# and related or neighboring rights to the source code in this file.
# http://creativecommons.org/publicdomain/zero/1.0/

"""Lilliput-TBC tweakable block cipher.

This module provides functions to encrypt and decrypt blocks of 128 bits.
"""

from .constants import BLOCK_BYTES, SBOX
from .helpers import xor
from .multiplications import ALPHAS


_PERMUTATION = [14, 11, 12, 10, 8, 9, 13, 15, 3, 1, 4, 5, 6, 0, 2, 7]
_PERMUTATION_INV = [13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6 ,0 ,7]


_ROUNDS = {
    128: 32,
    192: 36,
    256: 42
}


def _build_tweakey(tweak, key):
    return tweak+key


def _lane(TK, j):
    return TK[j*8:(j+1)*8]


def _round_tweakey_schedule(tweakey):
    p = len(tweakey)//8

    multiplied_lanes = (
        ALPHAS[j](_lane(tweakey, j)) for j in range(p)
    )

    return [byte for lane in multiplied_lanes for byte in lane]


def _subtweakey_extract(tweakey, Ci):
    RTKi = [0]*8

    for j, byte in enumerate(tweakey):
        RTKi[j%8] ^= byte

    RTKi[0] ^= Ci

    return RTKi


def _tweakey_schedule_whole(tweakey, r):
    TKs = [tweakey]
    RTKs = [_subtweakey_extract(TKs[0], 0)]

    for i in range(1, r):
        TKs.append(_round_tweakey_schedule(TKs[i-1]))
        RTKs.append(_subtweakey_extract(TKs[i], i))

    return RTKs


def _non_linear_layer(state, subtweakey):
    variables_xored = xor(state, subtweakey)

    variables_sboxed = [
        SBOX[variables_xored[i]] for i in range(8)
    ]

    state_output = state
    for i in range(8):
        state_output[15-i] ^= variables_sboxed[i]

    return state_output


def _linear_layer(state):
    state_output = state

    for byte in range(1, 8):
        state_output[15] ^= state[byte]

    for byte in range(9, 15):
        state_output[byte] ^= state[7]

    return state_output


def _permutation_layer(state, p):
    return [
        state[p[i]] for i in range(BLOCK_BYTES)
    ]


def _one_round_egfn_enc(state, subtweakey):
    state_non_linear = _non_linear_layer(state, subtweakey)
    state_linear = _linear_layer(state_non_linear)
    state_permutation = _permutation_layer(state_linear, _PERMUTATION)

    return state_permutation


def _last_round_egfn(state, subtweakey):
    state_non_linear = _non_linear_layer(state, subtweakey)
    state_linear = _linear_layer(state_non_linear)

    return state_linear


def _one_round_egfn_dec(state, subtweakey):
    state_non_linear = _non_linear_layer(state, subtweakey)
    state_linear = _linear_layer(state_non_linear)
    state_permutation = _permutation_layer(state_linear, _PERMUTATION_INV)

    return state_permutation


def encrypt(tweak, key, message):
    r = _ROUNDS[8*len(key)]

    tweakey = _build_tweakey(tweak, key)
    RTKs = _tweakey_schedule_whole(tweakey, r)

    state = message

    for i in range(r-1):
        state = _one_round_egfn_enc(state, RTKs[i])

    return _last_round_egfn(state, RTKs[r-1])


def decrypt(tweak, key, cipher):
    r = _ROUNDS[8*len(key)]

    tweakey = _build_tweakey(tweak, key)
    RTKs = _tweakey_schedule_whole(tweakey, r)

    state = cipher

    for i in range(r-1):
        state = _one_round_egfn_dec(state, RTKs[r-i-1])

    return _last_round_egfn(state, RTKs[0])