cipher.c 9.72 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
Threshold Implementation of the Lilliput-AE tweakable block cipher.

Authors, hereby denoted as "the implementer":
    Alexandre Adomnicai,
    Kévin Le Gouguec,
    Léo Reynaud,
    2019.

For more information, feedback or questions, refer to our website:
https://paclido.fr/lilliput-ae

To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/

---

This file provides a first-order threshold implementation of the Lilliput-AE
tweakable block cipher. The input block is split into 3 shares while the key
is split into 2 shares for the tweakey schedule. The S-box relies on look-up
tables and saves some memory usage at the cost of additional operations as
described in the specification. This implementation operates on 3 shares
throughout the entire round function in order to avoid extra randomness
generation to switch from 2 shares to 3 shares and vice versa.
*/

#include <stdint.h>
#include <string.h>

#include "cipher.h"
#include "constants.h"
#include "random.h"
#include "tweakey.h"


enum permutation
{
    PERMUTATION_ENCRYPTION = 0, /* PI(i) */
    PERMUTATION_DECRYPTION = 1, /* PI^-1(i) */
    PERMUTATION_NONE
};

typedef enum permutation permutation;

static const uint8_t PERMUTATIONS[2][BLOCK_BYTES] = {
    [PERMUTATION_ENCRYPTION] = { 13,  9, 14,  8, 10, 11, 12, 15,  4,  5,  3,  1,  2,  6,  0,  7 },
    [PERMUTATION_DECRYPTION] = { 14, 11, 12, 10,  8,  9, 13, 15,  3,  1,  4,  5,  6,  0,  2,  7 }
};

static const uint8_t F[16][16] = {
    {0x0, 0x2, 0x0, 0x2, 0x2, 0x0, 0x2, 0x0, 0x0, 0x2, 0x0, 0x2, 0x2, 0x0, 0x2, 0x0},
    {0x0, 0x2, 0x9, 0xb, 0x3, 0x1, 0xa, 0x8, 0xd, 0xf, 0x4, 0x6, 0xe, 0xc, 0x7, 0x5},
    {0x0, 0xb, 0x0, 0xb, 0xb, 0x0, 0xb, 0x0, 0x1, 0xa, 0x1, 0xa, 0xa, 0x1, 0xa, 0x1},
    {0x9, 0x2, 0x0, 0xb, 0x3, 0x8, 0xa, 0x1, 0x5, 0xe, 0xc, 0x7, 0xf, 0x4, 0x6, 0xd},
    {0x1, 0x2, 0x8, 0xb, 0x3, 0x0, 0xa, 0x9, 0x9, 0xa, 0x0, 0x3, 0xb, 0x8, 0x2, 0x1},
    {0x0, 0x3, 0x0, 0x3, 0x3, 0x0, 0x3, 0x0, 0x5, 0x6, 0x5, 0x6, 0x6, 0x5, 0x6, 0x5},
    {0x8, 0x2, 0x1, 0xb, 0x3, 0x9, 0xa, 0x0, 0x1, 0xb, 0x8, 0x2, 0xa, 0x0, 0x3, 0x9},
    {0x0, 0xa, 0x0, 0xa, 0xa, 0x0, 0xa, 0x0, 0x4, 0xe, 0x4, 0xe, 0xe, 0x4, 0xe, 0x4},
    {0x1, 0xe, 0x0, 0xf, 0xb, 0x4, 0xa, 0x5, 0x1, 0xe, 0x0, 0xf, 0xb, 0x4, 0xa, 0x5},
    {0xc, 0x3, 0x4, 0xb, 0x7, 0x8, 0xf, 0x0, 0x1, 0xe, 0x9, 0x6, 0xa, 0x5, 0x2, 0xd},
    {0x0, 0x6, 0x1, 0x7, 0x3, 0x5, 0x2, 0x4, 0x1, 0x7, 0x0, 0x6, 0x2, 0x4, 0x3, 0x5},
    {0x4, 0x2, 0xc, 0xa, 0x6, 0x0, 0xe, 0x8, 0x8, 0xe, 0x0, 0x6, 0xa, 0xc, 0x2, 0x4},
    {0x8, 0x6, 0x0, 0xe, 0x2, 0xc, 0xa, 0x4, 0x0, 0xe, 0x8, 0x6, 0xa, 0x4, 0x2, 0xc},
    {0x4, 0xa, 0x5, 0xb, 0xf, 0x1, 0xe, 0x0, 0x1, 0xf, 0x0, 0xe, 0xa, 0x4, 0xb, 0x5},
    {0x0, 0x7, 0x8, 0xf, 0x3, 0x4, 0xb, 0xc, 0x9, 0xe, 0x1, 0x6, 0xa, 0xd, 0x2, 0x5},
    {0x5, 0x2, 0x4, 0x3, 0x7, 0x0, 0x6, 0x1, 0x1, 0x6, 0x0, 0x7, 0x3, 0x4, 0x2, 0x5}
};

static const uint8_t G[4][16] = {
    {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf},
    {0x0, 0x1, 0x2, 0x3, 0x5, 0x4, 0x7, 0x6, 0x8, 0x9, 0xa, 0xb, 0xd, 0xc, 0xf, 0xe},
    {0x0, 0x1, 0x3, 0x2, 0x4, 0x5, 0x7, 0x6, 0x8, 0x9, 0xb, 0xa, 0xc, 0xd, 0xf, 0xe},
    {0x1, 0x0, 0x2, 0x3, 0x4, 0x5, 0x7, 0x6, 0x9, 0x8, 0xa, 0xb, 0xc, 0xd, 0xf, 0xe}
};

static const uint8_t Q[8][16] = {
    {0x0, 0x4, 0x2, 0x6, 0x8, 0xc, 0xa, 0xe, 0x1, 0x5, 0x3, 0x7, 0x9, 0xd, 0xb, 0xf},
    {0x0, 0x4, 0xa, 0xe, 0x8, 0xc, 0x2, 0x6, 0x3, 0x7, 0x9, 0xd, 0xb, 0xf, 0x1, 0x5},
    {0x0, 0xc, 0x2, 0xe, 0x8, 0x4, 0xa, 0x6, 0x1, 0xd, 0x3, 0xf, 0x9, 0x5, 0xb, 0x7},
    {0x8, 0x4, 0x2, 0xe, 0x0, 0xc, 0xa, 0x6, 0xb, 0x7, 0x1, 0xd, 0x3, 0xf, 0x9, 0x5},
    {0x0, 0x6, 0x2, 0x4, 0x8, 0xe, 0xa, 0xc, 0x1, 0x7, 0x3, 0x5, 0x9, 0xf, 0xb, 0xd},
    {0x2, 0x4, 0x8, 0xe, 0xa, 0xc, 0x0, 0x6, 0x1, 0x7, 0xb, 0xd, 0x9, 0xf, 0x3, 0x5},
    {0x0, 0xe, 0x2, 0xc, 0x8, 0x6, 0xa, 0x4, 0x1, 0xf, 0x3, 0xd, 0x9, 0x7, 0xb, 0x5},
    {0xa, 0x4, 0x0, 0xe, 0x2, 0xc, 0x8, 0x6, 0x9, 0x7, 0x3, 0xd, 0x1, 0xf, 0xb, 0x5}
};

static const uint8_t P[16] = {
    0x0, 0x2, 0x8, 0xa, 0x4, 0X6, 0xc, 0xe, 0x1, 0x3, 0x9, 0xb, 0x5, 0x7, 0xd, 0xf
};

static void _state_init(
    uint8_t X[BLOCK_BYTES],
    uint8_t Y[BLOCK_BYTES],
    uint8_t Z[BLOCK_BYTES],
    const uint8_t message[BLOCK_BYTES]
)
{
    uint8_t SHARES_0[BLOCK_BYTES];
    uint8_t SHARES_1[BLOCK_BYTES];
    randombytes(sizeof(SHARES_0), SHARES_0);
    randombytes(sizeof(SHARES_1), SHARES_1);

    memcpy(X, SHARES_0, BLOCK_BYTES);
    memcpy(Y, SHARES_1, BLOCK_BYTES);
    for (uint8_t i=0; i<BLOCK_BYTES; i++)
    {
        Z[i] = message[i] ^ SHARES_0[i] ^ SHARES_1[i];
    }
}


static void _compute_round_tweakeys(
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES],
    uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES],
    uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES]
)
{
    uint8_t TK_X[TWEAKEY_BYTES];
    uint8_t TK_Y[TWEAKEY_BYTES];
    tweakey_state_init(TK_X, TK_Y, key, tweak);
    tweakey_state_extract(TK_X, TK_Y, 0, RTK_X[0], RTK_Y[0]);

    for (uint8_t i=1; i<ROUNDS; i++)
    {
        tweakey_state_update(TK_X, TK_Y);
        tweakey_state_extract(TK_X, TK_Y, i, RTK_X[i], RTK_Y[i]);
    }
}


static void _nonlinear_layer(
    uint8_t X[BLOCK_BYTES],
    uint8_t Y[BLOCK_BYTES],
    uint8_t Z[BLOCK_BYTES],
    const uint8_t RTK_X[ROUND_TWEAKEY_BYTES],
    const uint8_t RTK_Y[ROUND_TWEAKEY_BYTES]
)
{
    uint8_t x_hi, y_hi, z_hi;   // High nibbles for the Feistel network
    uint8_t x_lo, y_lo, z_lo;   // Low nibbles for the Feistel network
    uint8_t tmp0, tmp1, tmp2;
    uint8_t TMP_X[ROUND_TWEAKEY_BYTES];
    uint8_t TMP_Y[ROUND_TWEAKEY_BYTES];
    uint8_t TMP_Z[ROUND_TWEAKEY_BYTES];

    // Apply the RTK to two shares
    for (size_t j=0; j<ROUND_TWEAKEY_BYTES; j++)
    {
        TMP_X[j] = X[j] ^ RTK_X[j];
        TMP_Y[j] = Y[j] ^ RTK_Y[j];
    }

    // Threshold Implementation of the 8-bit S-box
    for (size_t j=0; j<ROUND_TWEAKEY_BYTES; j++)
    {
        // Decomposition into nibbles
        x_hi = TMP_X[j] >> 4;
        x_lo = TMP_X[j] & 0xf;
        y_hi = TMP_Y[j] >> 4;
        y_lo = TMP_Y[j] & 0xf;
        z_hi = Z[j] >> 4;
        z_lo = Z[j] & 0xf;
        // First 4-bit S-box
        tmp0 = G[(y_lo&7)>>1][z_lo];
        tmp1 = G[(z_lo&7)>>1][x_lo];
        tmp2 = G[(x_lo&7)>>1][y_lo];
        x_hi ^= F[tmp1][tmp2];
        y_hi ^= F[tmp2][tmp0];
        z_hi ^= F[tmp0][tmp1];
        // Second 4-bit S-box
        tmp0 = P[Q[y_hi&3 ^ (y_hi&8)>>1][z_hi]];
        tmp1 = P[Q[z_hi&3 ^ (z_hi&8)>>1][x_hi]];
        tmp2 = P[Q[x_hi&3 ^ (x_hi&8)>>1][y_hi]];
        x_lo ^= Q[tmp1&3 ^ (tmp1&8)>>1][tmp2];
        y_lo ^= Q[tmp2&3 ^ (tmp2&8)>>1][tmp0];
        z_lo ^= Q[tmp0&3 ^ (tmp0&8)>>1][tmp1];
        // Third 4-bit S-box
        tmp0 = G[(y_lo&7)>>1][z_lo] ^ 1;
        tmp1 = G[(z_lo&7)>>1][x_lo];
        tmp2 = G[(x_lo&7)>>1][y_lo];
        x_hi ^= F[tmp1][tmp2];
        y_hi ^= F[tmp2][tmp0];
        z_hi ^= F[tmp0][tmp1];
        // Build bytes from nibbles
        TMP_X[j] = (x_hi << 4 | x_lo);
        TMP_Y[j] = (y_hi << 4 | y_lo);
        TMP_Z[j] = (z_hi << 4 | z_lo);
    }

    for (size_t j=0; j<8; j++)
    {
        size_t dest_j = 15-j;
        X[dest_j] ^= TMP_X[j];
        Y[dest_j] ^= TMP_Y[j];
        Z[dest_j] ^= TMP_Z[j];
    }
}

static void _linear_layer(uint8_t X[BLOCK_BYTES])
{
    X[15] ^= X[1];
    X[15] ^= X[2];
    X[15] ^= X[3];
    X[15] ^= X[4];
    X[15] ^= X[5];
    X[15] ^= X[6];
    X[15] ^= X[7];

    X[14] ^= X[7];
    X[13] ^= X[7];
    X[12] ^= X[7];
    X[11] ^= X[7];
    X[10] ^= X[7];
    X[9]  ^= X[7];
}

static void _permutation_layer(uint8_t X[BLOCK_BYTES], permutation p)
{
    if (p == PERMUTATION_NONE)
    {
        return;
    }

    uint8_t X_old[BLOCK_BYTES];
    memcpy(X_old, X, BLOCK_BYTES);

    const uint8_t *pi = PERMUTATIONS[p];

    for (size_t j=0; j<BLOCK_BYTES; j++)
    {
        X[pi[j]] = X_old[j];
    }
}

static void _one_round_egfn(
    uint8_t X[BLOCK_BYTES],
    uint8_t Y[BLOCK_BYTES],
    uint8_t Z[BLOCK_BYTES],
    const uint8_t RTK_X[ROUND_TWEAKEY_BYTES],
    const uint8_t RTK_Y[ROUND_TWEAKEY_BYTES],
    permutation p
)
{
    _nonlinear_layer(X, Y, Z, RTK_X, RTK_Y);
    _linear_layer(X);
    _linear_layer(Y);
    _linear_layer(Z);
    _permutation_layer(X, p);
    _permutation_layer(Y, p);
    _permutation_layer(Z, p);
}


void lilliput_tbc_encrypt(
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES],
    const uint8_t message[BLOCK_BYTES],
    uint8_t ciphertext[BLOCK_BYTES]
)
{
    uint8_t X[BLOCK_BYTES];
    uint8_t Y[BLOCK_BYTES];
    uint8_t Z[BLOCK_BYTES];
    _state_init(X, Y, Z, message);

    uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES];
    uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES];
    _compute_round_tweakeys(key, tweak, RTK_X, RTK_Y);


    for (uint8_t i=0; i<ROUNDS-1; i++)
    {
        _one_round_egfn(X, Y, Z, RTK_X[i], RTK_Y[i], PERMUTATION_ENCRYPTION);
    }

    _one_round_egfn(X, Y, Z, RTK_X[ROUNDS-1], RTK_Y[ROUNDS-1], PERMUTATION_NONE);


    for (size_t i=0; i<BLOCK_BYTES; i++)
    {
        ciphertext[i] = X[i] ^ Y[i] ^ Z[i];
    }
}

void lilliput_tbc_decrypt(
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES],
    const uint8_t ciphertext[BLOCK_BYTES],
    uint8_t message[BLOCK_BYTES]
)
{
    uint8_t X[BLOCK_BYTES];
    uint8_t Y[BLOCK_BYTES];
    uint8_t Z[BLOCK_BYTES];
    _state_init(X, Y, Z, ciphertext);

    uint8_t RTK_X[ROUNDS][ROUND_TWEAKEY_BYTES];
    uint8_t RTK_Y[ROUNDS][ROUND_TWEAKEY_BYTES];
    _compute_round_tweakeys(key, tweak, RTK_X, RTK_Y);

    for (uint8_t i=0; i<ROUNDS-1; i++)
    {
        _one_round_egfn(X, Y, Z, RTK_X[ROUNDS-1-i], RTK_Y[ROUNDS-1-i], PERMUTATION_DECRYPTION);
    }

    _one_round_egfn(X, Y, Z, RTK_X[0], RTK_Y[0], PERMUTATION_NONE);

    for (size_t i=0; i<BLOCK_BYTES; i++)
    {
        message[i] = X[i] ^ Y[i] ^ Z[i];
    }
}