cipher.c 5.4 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/*
Implementation of the Lilliput-AE tweakable block cipher.

Authors, hereby denoted as "the implementer":
    Kévin Le Gouguec,
    2019.

For more information, feedback or questions, refer to our website:
https://paclido.fr/lilliput-ae

To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/

---

This file provides the implementation for Lilliput-TBC.
*/

#include <stdint.h>
#include <string.h>

#include "cipher.h"
#include "constants.h"
#include "tweakey.h"


enum permutation
{
    PERMUTATION_ENCRYPTION = 0, /* PI(i) */
    PERMUTATION_DECRYPTION = 1, /* PI^-1(i) */
    PERMUTATION_NONE
};

typedef enum permutation permutation;

static const uint8_t PERMUTATIONS[2][BLOCK_BYTES] = {
    [PERMUTATION_ENCRYPTION] = { 13,  9, 14,  8, 10, 11, 12, 15,  4,  5,  3,  1,  2,  6,  0,  7 },
    [PERMUTATION_DECRYPTION] = { 14, 11, 12, 10,  8,  9, 13, 15,  3,  1,  4,  5,  6,  0,  2,  7 }
};

static const uint8_t S[256] = {
    0x20, 0x00, 0xB2, 0x85, 0x3B, 0x35, 0xA6, 0xA4, 0x30, 0xE4, 0x6A, 0x2C, 0xFF, 0x59, 0xE2, 0x0E,
    0xF8, 0x1E, 0x7A, 0x80, 0x15, 0xBD, 0x3E, 0xB1, 0xE8, 0xF3, 0xA2, 0xC2, 0xDA, 0x51, 0x2A, 0x10,
    0x21, 0x01, 0x23, 0x78, 0x5C, 0x24, 0x27, 0xB5, 0x37, 0xC7, 0x2B, 0x1F, 0xAE, 0x0A, 0x77, 0x5F,
    0x6F, 0x09, 0x9D, 0x81, 0x04, 0x5A, 0x29, 0xDC, 0x39, 0x9C, 0x05, 0x57, 0x97, 0x74, 0x79, 0x17,
    0x44, 0xC6, 0xE6, 0xE9, 0xDD, 0x41, 0xF2, 0x8A, 0x54, 0xCA, 0x6E, 0x4A, 0xE1, 0xAD, 0xB6, 0x88,
    0x1C, 0x98, 0x7E, 0xCE, 0x63, 0x49, 0x3A, 0x5D, 0x0C, 0xEF, 0xF6, 0x34, 0x56, 0x25, 0x2E, 0xD6,
    0x67, 0x75, 0x55, 0x76, 0xB8, 0xD2, 0x61, 0xD9, 0x71, 0x8B, 0xCD, 0x0B, 0x72, 0x6C, 0x31, 0x4B,
    0x69, 0xFD, 0x7B, 0x6D, 0x60, 0x3C, 0x2F, 0x62, 0x3F, 0x22, 0x73, 0x13, 0xC9, 0x82, 0x7F, 0x53,
    0x32, 0x12, 0xA0, 0x7C, 0x02, 0x87, 0x84, 0x86, 0x93, 0x4E, 0x68, 0x46, 0x8D, 0xC3, 0xDB, 0xEC,
    0x9B, 0xB7, 0x89, 0x92, 0xA7, 0xBE, 0x3D, 0xD8, 0xEA, 0x50, 0x91, 0xF1, 0x33, 0x38, 0xE0, 0xA9,
    0xA3, 0x83, 0xA1, 0x1B, 0xCF, 0x06, 0x95, 0x07, 0x9E, 0xED, 0xB9, 0xF5, 0x4C, 0xC0, 0xF4, 0x2D,
    0x16, 0xFA, 0xB4, 0x03, 0x26, 0xB3, 0x90, 0x4F, 0xAB, 0x65, 0xFC, 0xFE, 0x14, 0xF7, 0xE3, 0x94,
    0xEE, 0xAC, 0x8C, 0x1A, 0xDE, 0xCB, 0x28, 0x40, 0x7D, 0xC8, 0xC4, 0x48, 0x6B, 0xDF, 0xA5, 0x52,
    0xE5, 0xFB, 0xD7, 0x64, 0xF9, 0xF0, 0xD3, 0x5E, 0x66, 0x96, 0x8F, 0x1D, 0x45, 0x36, 0xCC, 0xC5,
    0x4D, 0x9F, 0xBF, 0x0F, 0xD1, 0x08, 0xEB, 0x43, 0x42, 0x19, 0xE7, 0x99, 0xA8, 0x8E, 0x58, 0xC1,
    0x9A, 0xD4, 0x18, 0x47, 0xAA, 0xAF, 0xBC, 0x5B, 0xD5, 0x11, 0xD0, 0xB0, 0x70, 0xBB, 0x0D, 0xBA
};


static void _state_init(uint8_t X[BLOCK_BYTES], const uint8_t message[BLOCK_BYTES])
{
    memcpy(X, message, BLOCK_BYTES);
}


static void _compute_round_tweakeys(
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES],
    uint8_t RTK[ROUNDS][ROUND_TWEAKEY_BYTES]
)
{
    uint8_t TK[TWEAKEY_BYTES];
    tweakey_state_init(TK, key, tweak);
    tweakey_state_extract(TK, 0, RTK[0]);

    for (uint8_t i=1; i<ROUNDS; i++)
    {
        tweakey_state_update(TK);
        tweakey_state_extract(TK, i, RTK[i]);
    }
}


static void _nonlinear_layer(uint8_t X[BLOCK_BYTES], const uint8_t RTK[ROUND_TWEAKEY_BYTES])
{
    uint8_t F[ROUND_TWEAKEY_BYTES];
    for (size_t j=0; j<ROUND_TWEAKEY_BYTES; j++)
    {
        F[j] = X[j] ^ RTK[j];
    }

    for (size_t j=0; j<ROUND_TWEAKEY_BYTES; j++)
    {
        F[j] = S[F[j]];
    }

    for (size_t j=0; j<8; j++)
    {
        size_t dest_j = 15-j;
        X[dest_j] ^= F[j];
    }
}

static void _linear_layer(uint8_t X[BLOCK_BYTES])
{
    X[15] ^= X[1];
    X[15] ^= X[2];
    X[15] ^= X[3];
    X[15] ^= X[4];
    X[15] ^= X[5];
    X[15] ^= X[6];
    X[15] ^= X[7];

    X[14] ^= X[7];
    X[13] ^= X[7];
    X[12] ^= X[7];
    X[11] ^= X[7];
    X[10] ^= X[7];
    X[9]  ^= X[7];
}

static void _permutation_layer(uint8_t X[BLOCK_BYTES], permutation p)
{
    if (p == PERMUTATION_NONE)
    {
        return;
    }

    uint8_t X_old[BLOCK_BYTES];
    memcpy(X_old, X, BLOCK_BYTES);

    const uint8_t *pi = PERMUTATIONS[p];

    for (size_t j=0; j<BLOCK_BYTES; j++)
    {
        X[pi[j]] = X_old[j];
    }
}

static void _one_round_egfn(uint8_t X[BLOCK_BYTES], const uint8_t RTK[ROUND_TWEAKEY_BYTES], permutation p)
{
    _nonlinear_layer(X, RTK);
    _linear_layer(X);
    _permutation_layer(X, p);
}


void lilliput_tbc_encrypt(
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES],
    const uint8_t message[BLOCK_BYTES],
    uint8_t ciphertext[BLOCK_BYTES]
)
{
    uint8_t X[BLOCK_BYTES];
    _state_init(X, message);

    uint8_t RTK[ROUNDS][ROUND_TWEAKEY_BYTES];
    _compute_round_tweakeys(key, tweak, RTK);

    for (uint8_t i=0; i<ROUNDS-1; i++)
    {
        _one_round_egfn(X, RTK[i], PERMUTATION_ENCRYPTION);
    }

    _one_round_egfn(X, RTK[ROUNDS-1], PERMUTATION_NONE);

    memcpy(ciphertext, X, BLOCK_BYTES);
}

void lilliput_tbc_decrypt(
    const uint8_t key[KEY_BYTES],
    const uint8_t tweak[TWEAK_BYTES],
    const uint8_t ciphertext[BLOCK_BYTES],
    uint8_t message[BLOCK_BYTES]
)
{
    uint8_t X[BLOCK_BYTES];
    _state_init(X, ciphertext);

    uint8_t RTK[ROUNDS][ROUND_TWEAKEY_BYTES];
    _compute_round_tweakeys(key, tweak, RTK);

    for (uint8_t i=0; i<ROUNDS-1; i++)
    {
        _one_round_egfn(X, RTK[ROUNDS-1-i], PERMUTATION_DECRYPTION);
    }

    _one_round_egfn(X, RTK[0], PERMUTATION_NONE);

    memcpy(message, X, BLOCK_BYTES);
}