encrypt.c 6.52 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
#include"crypto_aead.h"
#include"api.h"

#include <stdio.h>
#include <stdlib.h>
typedef unsigned char u8;
typedef unsigned long long u64;
typedef long long i64;
typedef long long i64;
typedef unsigned int u32;

#define sbox(a, b, c, d, e, f, g, h)                                                                            \
{                                                                                                                             \
	t1 = ~a; t2 = b & t1;t3 = c ^ t2; h = d ^ t3; t5 = b | c; t6 = d ^ t1; g = t5 ^ t6; t8 = b ^ d; t9 = t3 & t6; e = t8 ^ t9; t11 = g & t8; f = t3 ^ t11; \
}

#define ARR_SIZE(a) (sizeof((a))/sizeof((a[0])))
#define ROTR961(a,b,n) (((a)<<(n))|((b)>>(64-n)))
#define ROTR962(a,b,n) (((b)<<(n))|((a)>>(32-n)))

#define ROTR96MORE321(a,b,n) ((b<<(n-32))>>32)
//#define ROTR96552(a,b,n) (b<<n|a<<(n-32)|b>>(64-(n-32)))
#define ROTR96MORE322(a,b,n) (b<<n|(u64)a<<(n-32)|b>>(96-n))

u8 constant7[127] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x41, 0x03, 0x06,
		0x0c, 0x18, 0x30, 0x61, 0x42, 0x05, 0x0a, 0x14, 0x28, 0x51, 0x23, 0x47,
		0x0f, 0x1e, 0x3c, 0x79, 0x72, 0x64, 0x48, 0x11, 0x22, 0x45, 0x0b, 0x16,
		0x2c, 0x59, 0x33, 0x67, 0x4e, 0x1d, 0x3a, 0x75, 0x6a, 0x54, 0x29, 0x53,
		0x27, 0x4f, 0x1f, 0x3e, 0x7d, 0x7a, 0x74, 0x68, 0x50, 0x21, 0x43, 0x07,
		0x0e, 0x1c, 0x38, 0x71, 0x62, 0x44, 0x09, 0x12, 0x24, 0x49, 0x13, 0x26,
		0x4d, 0x1b, 0x36, 0x6d, 0x5a, 0x35, 0x6b, 0x56, 0x2d, 0x5b, 0x37, 0x6f,
		0x5e, 0x3d, 0x7b, 0x76, 0x6c, 0x58, 0x31, 0x63, 0x46, 0x0d, 0x1a, 0x34,
		0x69, 0x52, 0x25, 0x4b, 0x17, 0x2e, 0x5d, 0x3b, 0x77, 0x6e, 0x5c, 0x39,
		0x73, 0x66, 0x4c, 0x19, 0x32, 0x65, 0x4a, 0x15, 0x2a, 0x55, 0x2b, 0x57,
		0x2f, 0x5f, 0x3f, 0x7f, 0x7e, 0x7c, 0x78, 0x70, 0x60, 0x40 };

void load64(u64* x, u8* S) {
	int i;
	*x = 0;
	for (i = 0; i < 8; ++i)
		*x |= ((u64) S[i]) << (56 - i * 8);
}

void store64(u8* S, u64 x) {
	int i;
	for (i = 0; i < 8; ++i)
		S[i] = (u8) (x >> (56 - i * 8));
}

void load32(u32* x, u8* S) {
	int i;
	*x = 0;
	for (i = 0; i < 4; ++i)
		*x |= ((u32) S[i]) << (24 - i * 8);
}

void store32(u8* S, u32 x) {
	int i;
	for (i = 0; i < 4; ++i)
		S[i] = (u8) (x >> (24 - i * 8));
}

void permutation384(u8* S, int rounds, u8 *c) {
	int i;
	u32 x00, x10, x20, x30;
	u64 x01, x11, x21, x31;
	u32 x40, x50, x60, x70;
	u64 x41, x51, x61, x71;

	load32(&x00, S + 36);
	load64(&x01, S + 40);

	load32(&x10, S + 24);
	load64(&x11, S + 28);

	load32(&x20, S + 12);
	load64(&x21, S + 16);

	load32(&x30, S + 0);
	load64(&x31, S + 4);
	u64 t1, t2, t3, t5, t6, t8, t9, t11;
	for (i = 0; i < rounds; ++i) {
		// addition of round constant
		x01 ^= c[i];
		// Sbox
		sbox(x00, x10, x20, x30, x40, x50, x60, x70);
		sbox(x01, x11, x21, x31, x41, x51, x61, x71);
		// linear diffusion layer
		x00 = x40;
		x01 = x41;
		x10 = ROTR961(x50, x51, 1);
		x11 = ROTR962(x50, x51, 1);
		x20 = ROTR961(x60, x61, 8);
		x21 = ROTR962(x60, x61, 8);
		x30 = ROTR96MORE321(x70, x71, 55);
		x31 = ROTR96MORE322(x70, x71, 55);
	}
	store32(S + 36, x00);
	store64(S + 40, x01);
	store32(S + 24, x10);
	store64(S + 28, x11);
	store32(S + 12, x20);
	store64(S + 16, x21);
	store32(S + 0, x30);
	store64(S + 4, x31);
}
int crypto_aead_encrypt(unsigned char *c, unsigned long long *clen,
		const unsigned char *m, unsigned long long mlen,
		const unsigned char *ad, unsigned long long adlen,
		const unsigned char *nsec, const unsigned char *npub,
		const unsigned char *k) {

	int nr0 = 76;
	int nr = 40;
	int nrf = 44;
	u32 klen = CRYPTO_KEYBYTES;
	u32 nlen = CRYPTO_NPUBBYTES;
	u32 taglen = CRYPTO_ABYTES;
	u32 size = 384 / 8; //48  4*12
	u32 rate = 96 / 8; //12
	u32 capacity = size - rate; //36 288/8=36
	u64 u = adlen / rate + 1;
	u64 v = mlen / rate + 1;
	u64 l = mlen % rate;

	u8 S[size];
	u8 A[u * rate];
	u8 M[v * rate];
	u64 i, j;
	// pad associated data
	for (i = 0; i < adlen; ++i)
		A[i] = ad[i];
	A[adlen] = 0x80;
	for (i = adlen + 1; i < u * rate; ++i)
		A[i] = 0;
	// pad plaintext
	for (i = 0; i < mlen; ++i)
		M[i] = m[i];
	M[mlen] = 0x80;
	for (i = mlen + 1; i < v * rate; ++i)
		M[i] = 0;
	// initialization
	for (i = 0; i < nlen; ++i)
		S[i] = npub[i];
	;
	for (i = 0; i < klen; ++i)
		S[klen + i] = k[i];
	permutation384(S, nr0, constant7);
// process associated data
	if (adlen != 0) {
		for (i = 0; i < u; ++i) {
			for (j = 0; j < rate; ++j) {
				S[j] ^= A[i * rate + j];
			}
			permutation384(S, nr, constant7);
		}
	}
S[size - 1] ^= 1;
	// process plaintext
	if (mlen) {
		for (i = 0; i < v - 1; ++i) {
			for (j = 0; j < rate; ++j) {
				S[j] ^= M[i * rate + j];
				c[i * rate + j] = S[j];
			}
			permutation384(S, nr, constant7);
		}
		//不进行P
		for (j = 0; j <= l; ++j) {
			S[j] ^= M[i * rate + j];
			c[i * rate + j] = S[j];
		}
	}
	// finalization
	permutation384(S, nrf, constant7);
	// return tag
	for (i = 0; i < taglen; ++i) {
		c[mlen + i] = S[i];
	}
	*clen = mlen + taglen;
	return 0;
}

int crypto_aead_decrypt(unsigned char *m, unsigned long long *mlen,
		unsigned char *nsec, const unsigned char *c, unsigned long long clen,
		const unsigned char *ad, unsigned long long adlen,
		const unsigned char *npub, const unsigned char *k) {

	
	int nr0 = 76;
	int nr = 40;
	int nrf = 44;

	*mlen = 0;
	if (clen < CRYPTO_KEYBYTES)
		return -1;
	u32 klen = CRYPTO_KEYBYTES;
	u32 nlen = CRYPTO_NPUBBYTES;
	u32 taglen = CRYPTO_ABYTES;
	u32 size = 384 / 8; //48  4*12
	u32 rate = 96 / 8; //24
	u32 capacity = size - rate; //24

	u64 u = adlen / rate + 1;
	u64 v = (clen - taglen) / rate + 1;
	u64 l = (clen - taglen) % rate;
	u8 S[size];
	u8 A[u * rate];
	u8 M[v * rate];
	u64 i, j;
	// pad associated data
	for (i = 0; i < adlen; ++i)
		A[i] = ad[i];
	A[adlen] = 0x80;
	for (i = adlen + 1; i < u * rate; ++i)
		A[i] = 0;
	// initialization
	for (i = 0; i < nlen; ++i)
		S[i] = npub[i];
	;
	for (i = 0; i < klen; ++i)
		S[klen + i] = k[i];
	permutation384(S, nr0, constant7);
// process associated data
	if (adlen != 0) {
		for (i = 0; i < u; ++i) {
			for (j = 0; j < rate; ++j) {
				S[j] ^= A[i * rate + j];
			}
			permutation384(S, nr, constant7);
		}
	}
S[size - 1] ^= 1;
// process c
	if (clen - taglen>0) {
		for (i = 0; i < v - 1; ++i) {
			for (j = 0; j < rate; ++j) {
				M[j + rate * i ] = S[j] ^ c[j + rate * i ];
				S[j] = c[i * rate + j ];
			}
			permutation384(S, nr, constant7);
		}

		for (j = 0; j < l; ++j) {
			M[j + rate * i ] = S[j] ^ c[j + rate * i ];
			S[j] = c[i * rate + j ];
		}
		S[j] ^= 0x80;
	}
	// finalization
	permutation384(S, nrf, constant7);
	// return -1 if verification fails
	for (i = 0; i < klen; ++i)
		if (c[clen - klen + i] != S[i])
			return -1;
	// return plaintext
	*mlen = clen - taglen;
	for (i = 0; i < *mlen; ++i)
		m[i] = M[i];
	return 0;
}