decrypt.c 3.32 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#include "api.h"
#include "endian.h"
#include "permutations.h"

#define RATE (128 / 8)
#define PA_ROUNDS 12
#define PB_ROUNDS 8
#define IV                                                        \
  ((u64)(8 * (CRYPTO_KEYBYTES)) << 56 | (u64)(8 * (RATE)) << 48 | \
   (u64)(PA_ROUNDS) << 40 | (u64)(PB_ROUNDS) << 32)

int crypto_aead_decrypt(unsigned char* m, unsigned long long* mlen,
                        unsigned char* nsec, const unsigned char* c,
                        unsigned long long clen, const unsigned char* ad,
                        unsigned long long adlen, const unsigned char* npub,
                        const unsigned char* k) {
  if (clen < CRYPTO_ABYTES) {
    *mlen = 0;
    return -1;
  }

  u32_2 K0, K1, N0, N1;
  u32_2 x0, x1, x2, x3, x4;
  u32_2 t0, t1;
  u64 tmp0, tmp1;
  u32 i;
  (void)nsec;

  // set plaintext size
  *mlen = clen - CRYPTO_ABYTES;

  to_bit_interleaving(K0, U64BIG(*(u64*)k));
  to_bit_interleaving(K1, U64BIG(*(u64*)(k + 8)));
  to_bit_interleaving(N0, U64BIG(*(u64*)npub));
  to_bit_interleaving(N1, U64BIG(*(u64*)(npub + 8)));

  // initialization
  to_bit_interleaving(x0, IV);
  x1.o = K0.o;
  x1.e = K0.e;
  x2.e = K1.e;
  x2.o = K1.o;
  x3.e = N0.e;
  x3.o = N0.o;
  x4.e = N1.e;
  x4.o = N1.o;
  P12();
  x3.e ^= K0.e;
  x3.o ^= K0.o;
  x4.e ^= K1.e;
  x4.o ^= K1.o;

  // process associated data
  if (adlen) {
    while (adlen >= RATE) {
      to_bit_interleaving(t0, U64BIG(*(u64*)ad));
      x0.e ^= t0.e;
      x0.o ^= t0.o;
      to_bit_interleaving(t1, U64BIG(*(u64*)(ad + 8)));
      x1.e ^= t1.e;
      x1.o ^= t1.o;
      P8();
      adlen -= RATE;
      ad += RATE;
    }
    tmp0 = 0;
    tmp1 = 0;
    for (i = 0; i < adlen; ++i, ++ad)
      if (i < 8)
        tmp0 ^= INS_BYTE64(*ad, i);
      else
        tmp1 ^= INS_BYTE64(*ad, i % 8);
    if (adlen < 8)
      tmp0 ^= INS_BYTE64(0x80, adlen);
    else
      tmp1 ^= INS_BYTE64(0x80, adlen % 8);
    to_bit_interleaving(t0, tmp0);
    x0.e ^= t0.e;
    x0.o ^= t0.o;
    to_bit_interleaving(t1, tmp1);
    x1.e ^= t1.e;
    x1.o ^= t1.o;
    P8();
  }
  x4.e ^= 1;

  // process plaintext
  clen -= CRYPTO_ABYTES;
  while (clen >= RATE) {
    from_bit_interleaving(tmp0, x0);
    from_bit_interleaving(tmp1, x1);
    *(u64*)m = U64BIG(tmp0) ^ *(u64*)c;
    *(u64*)(m + 8) = U64BIG(tmp1) ^ *(u64*)(c + 8);
    to_bit_interleaving(x0, U64BIG(*(u64*)c));
    to_bit_interleaving(x1, U64BIG(*(u64*)(c + 8)));
    P8();
    clen -= RATE;
    m += RATE;
    c += RATE;
  }
  from_bit_interleaving(tmp0, x0);
  from_bit_interleaving(tmp1, x1);
  for (i = 0; i < clen; ++i, ++m, ++c) {
    if (i < 8) {
      *m = EXT_BYTE64(tmp0, i) ^ *c;
      tmp0 &= ~INS_BYTE64(0xff, i);
      tmp0 |= INS_BYTE64(*c, i);
    } else {
      *m = EXT_BYTE64(tmp1, i % 8) ^ *c;
      tmp1 &= ~INS_BYTE64(0xff, i % 8);
      tmp1 |= INS_BYTE64(*c, i % 8);
    }
  }
  if (clen < 8)
    tmp0 ^= INS_BYTE64(0x80, clen);
  else
    tmp1 ^= INS_BYTE64(0x80, clen % 8);
  to_bit_interleaving(x0, tmp0);
  to_bit_interleaving(x1, tmp1);

  // finalization
  x2.e ^= K0.e;
  x2.o ^= K0.o;
  x3.e ^= K1.e;
  x3.o ^= K1.o;
  P12();
  x3.e ^= K0.e;
  x3.o ^= K0.o;
  x4.e ^= K1.e;
  x4.o ^= K1.o;

  // verify tag
  from_bit_interleaving(tmp0, x3);
  from_bit_interleaving(tmp1, x4);
  if (*(u64*)c != U64BIG(tmp0) || *(u64*)(c + 8) != U64BIG(tmp1)) {
    *mlen = 0;
    return -1;
  }

  return 0;
}