experiment.cpp 7.03 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#include <iostream>
#include <thread>
#include <vector>

#include <sched.h>

#include <embb/mtapi/mtapi.h>

#include "defines.h"

#define UNUSED(x) ((void)(x))

#define DOMAIN_ID 1
#define NODE_ID 1
#define ACTION_ID 2

auto gcd(long long a, long long b) -> long long
{
    return b == 0 ? a : gcd(b, a % b);
}

auto lcm(long long a, long long b) -> long long
{
    return (a * b) / gcd(a, b);
}

auto calculate_hyperperiod() -> long long 
{
    long long hyperperiod = taskset[0].period;
    for(int i = 1; i < taskset_length; i++) {
        hyperperiod = lcm(hyperperiod, taskset[i].period); 
    }
    return hyperperiod;
}

struct timestamps {
    base_clock::time_point start;
    base_clock::time_point end;
    int core_id = 0;
};

base_clock::time_point start;
base_clock::time_point end;
std::vector<timestamps> benchmark[taskset_length];

void benchmark_out()
{
    using namespace std::chrono;

    std::cout << "benchmark results ";
    std::cout << "start " << base_clock::to_time_t(start) << " ";
    std::cout << "end " << base_clock::to_time_t(end) << std::endl;

    for(int i = 0; i < taskset_length; i++) {
        std::cout << "task " << i << " ";
        std::cout << "wcet " << taskset[i].wcet << " ";
        std::cout << "period " << taskset[i].period << " ";
        std::cout << "deadline " << taskset[i].deadline << " ";
        std::cout << "executions " << taskset[i].count << std::endl;

        for(int j = 0; j < benchmark[i].size(); j++) {
            auto start = base_clock::to_time_t(benchmark[i][j].start);
            auto end = base_clock::to_time_t(benchmark[i][j].end);
            auto core_id = benchmark[i][j].core_id;
            std::cout << "instance " << i << " ";
            std::cout << "start " << start << " ";
            std::cout << "end " << end << " ";
            std::cout << "core_id " << core_id << std::endl;
        }
    }
}

/******
 * Task Declarations
 ******/

/* Workaround helper function, the base node action is not initialized if the 
 * node gets attributes set.
 */
static void ActionFunction(
        const void* args,
        mtapi_size_t /*args_size*/,
        void* /*result_buffer*/,
        mtapi_size_t /*result_buffer_size*/,
        const void* /*node_local_data*/,
        mtapi_size_t /*node_local_data_size*/,
        mtapi_task_context_t * context) {
    embb::mtapi::TaskContext task_context(context);
    embb::base::Function<void, embb::mtapi::TaskContext &> * func =
        reinterpret_cast<embb::base::Function<void, embb::mtapi::TaskContext &>*>(
                const_cast<void*>(args));
    (*func)(task_context);
    embb::base::Allocation::Delete(func);
}

static void IdleTask(const void* args, mtapi_size_t, void*, mtapi_size_t, 
                     const void*, mtapi_size_t, mtapi_task_context_t*)
{
    using namespace std::chrono;
    /* Get access to parameter data. */
    auto data = static_cast<const std::pair<int,int>*>(args);

    auto task_id = data->first;
    auto task_num = data->second;
    auto start_time = base_clock::now();

    /* idle until task completion. */
    auto idle_time = cpp_time_base(taskset[task_id].wcet);
    std::this_thread::sleep_for(idle_time);

    /* Store our benchmarking data. */
    auto end_time = base_clock::now();
    int core_id = sched_getcpu();

    benchmark[task_id][task_num - 1].start = start_time;
    benchmark[task_id][task_num - 1].end = end_time;
    benchmark[task_id][task_num - 1].core_id = core_id;
}

/****
 * Main loop of task starter core.
 ****/

static void TaskStarter()
{
    /* Initialize task starter */
    auto& node = embb::mtapi::Node::GetInstance();
    /* Storage for any task which is started. */
    std::vector<embb::mtapi::Task> running;
    /* Storage for task parameters. */
    std::vector<std::pair<int,int>> running_num;

    auto hyperperiod = calculate_hyperperiod();

    using namespace std::chrono;

    start = base_clock::now();

    auto cur_time = duration_cast<cpp_time_base>(base_clock::now() - start);
    std::cerr << "Starting TaskStarter thread at: ";
    std::cerr << base_clock::to_time_t(start) << std::endl;

    while(cur_time.count() < hyperperiod) {
        auto min = cpp_time_base::max();

        /* Check for every task if it has to be executed. */
        for(int i = 0; i < taskset_length; i++) {
            auto task_period = cpp_time_base(taskset[i].period);
            /* Execute always then when a next period has started, meaning when
             * cur_time / task_period is bigger than for the last check. The
             * first task_period is to let the tasks start at time 0 and not at
             * time task_period.
             */
            auto count = (cur_time + task_period) / task_period;

            /* Check how long to sleep next, either min(cur_time % period), or 
             * period if cur_time % period == 0
             */
            auto remaining = cur_time % task_period;
            remaining = remaining.count() == 0 ? task_period : remaining;
            if(remaining < min) {
                min = remaining;
            }

            if(count > taskset[i].count) {
                embb::mtapi::ExecutionPolicy deadline_policy(embb_time_base(taskset[i].deadline));
                /* Store parameters for execution.
                 * The count may change during the execution, therefore we have
                 * to make sure that all possible running tasks can access their
                 * parameters. 
                 */
                running_num.push_back(std::make_pair(i,count));
                node.CreateAction(ACTION_ID + i + 1, IdleTask);
                auto job = node.GetJob(ACTION_ID + i + 1, DOMAIN_ID);

                int tmp; auto t = node.Start(job, &running_num.back(), &tmp);

                /* Store task to wait for it. */
                running.push_back(t);
                taskset[i].count = count;
            }
        }

        std::this_thread::sleep_for(min);
        cur_time = duration_cast<cpp_time_base>(base_clock::now() - start);
    }

    /* Wait for all started tasks to be completed. */
    for(auto& task : running) {
        task.Wait(MTAPI_INFINITE);
    }

    end = base_clock::now();
    std::cerr << "Finishing TaskStarter thread at: ";
    std::cerr << base_clock::to_time_t(end) << std::endl;
}

int main(int argc, char* argv[]) 
{
    UNUSED(argc);
    UNUSED(argv);

    /* Initialize node and set global edf as scheduling method. */
    embb::mtapi::NodeAttributes attr;
    attr.SetSchedulerMode(GLOBAL_EDF);
    embb::mtapi::Node::Initialize(DOMAIN_ID, NODE_ID, attr);
    auto& node = embb::mtapi::Node::GetInstance();

    /* Initialize storage for benchmarking data */
    auto hyperperiod = calculate_hyperperiod();
    for(int i = 0; i < taskset_length; i++) {
        auto job_count = hyperperiod / taskset[i].period;
        benchmark[i] = std::vector<timestamps>(job_count);
    }

    /* Workaround, the base node action is not initialized if the node gets
     * attributes set.
     */
    node.CreateAction(ACTION_ID, ActionFunction);

    /* Start task loop */
    TaskStarter();

    /* Print experiment results. */
    benchmark_out();

    return 0; 
}