experiment.cpp 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
#include <iostream>
#include <thread>
#include <vector>

#include <sched.h>

#include <embb/mtapi/mtapi.h>

#include "defines.h"

11 12 13
#include "timing_header.h"
#include "fun.h"

14 15 16 17 18 19
#define UNUSED(x) ((void)(x))

#define DOMAIN_ID 1
#define NODE_ID 1
#define ACTION_ID 2

20 21 22 23 24 25 26 27 28 29 30 31
auto loop_count(int duration) -> long long
{
    if(duration < sizeof(timetable) / sizeof(int)) {
        return timetable[duration];
    }

    float m = ((float)timetable[94] - (float)timetable[4]) / (90.0f);
    float t = ((float)timetable[9] - m * 9);

    return m * (float) duration + t;
}

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
auto gcd(long long a, long long b) -> long long
{
    return b == 0 ? a : gcd(b, a % b);
}

auto lcm(long long a, long long b) -> long long
{
    return (a * b) / gcd(a, b);
}

auto calculate_hyperperiod() -> long long 
{
    long long hyperperiod = taskset[0].period;
    for(int i = 1; i < taskset_length; i++) {
        hyperperiod = lcm(hyperperiod, taskset[i].period); 
    }
    return hyperperiod;
}

struct timestamps {
Tobias Langer committed
52 53
    cpp_time_base start;
    cpp_time_base end;
54 55 56
    int core_id = 0;
};

Tobias Langer committed
57 58 59 60
/**
 * Make place to store timestamps of any running task instance.
 */

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
base_clock::time_point start;
base_clock::time_point end;
std::vector<timestamps> benchmark[taskset_length];

void benchmark_out()
{
    using namespace std::chrono;

    std::cout << "benchmark results ";
    std::cout << "start " << base_clock::to_time_t(start) << " ";
    std::cout << "end " << base_clock::to_time_t(end) << std::endl;

    for(int i = 0; i < taskset_length; i++) {
        std::cout << "task " << i << " ";
        std::cout << "wcet " << taskset[i].wcet << " ";
        std::cout << "period " << taskset[i].period << " ";
        std::cout << "deadline " << taskset[i].deadline << " ";
        std::cout << "executions " << taskset[i].count << std::endl;

        for(int j = 0; j < benchmark[i].size(); j++) {
81 82
            auto task_start = benchmark[i][j].start.count();
            auto task_end = benchmark[i][j].end.count();
83
            auto core_id = benchmark[i][j].core_id;
Tobias Langer committed
84
            std::cout << "instance " << j << " ";
85
            std::cout << "start " << task_start << " ";
Tobias Langer committed
86
            std::cout << "end " << task_end << " ";
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            std::cout << "core_id " << core_id << std::endl;
        }
    }
}

/******
 * Task Declarations
 ******/

/* Workaround helper function, the base node action is not initialized if the 
 * node gets attributes set.
 */
static void ActionFunction(
        const void* args,
        mtapi_size_t /*args_size*/,
        void* /*result_buffer*/,
        mtapi_size_t /*result_buffer_size*/,
        const void* /*node_local_data*/,
        mtapi_size_t /*node_local_data_size*/,
        mtapi_task_context_t * context) {
    embb::mtapi::TaskContext task_context(context);
    embb::base::Function<void, embb::mtapi::TaskContext &> * func =
        reinterpret_cast<embb::base::Function<void, embb::mtapi::TaskContext &>*>(
                const_cast<void*>(args));
    (*func)(task_context);
    embb::base::Allocation::Delete(func);
}

static void IdleTask(const void* args, mtapi_size_t, void*, mtapi_size_t, 
                     const void*, mtapi_size_t, mtapi_task_context_t*)
{
    using namespace std::chrono;
    /* Get access to parameter data. */
    auto data = static_cast<const std::pair<int,int>*>(args);

    auto task_id = data->first;
    auto task_num = data->second;
    auto start_time = base_clock::now();

    /* idle until task completion. */
127 128 129 130 131
    auto idle_time = taskset[task_id].wcet;

    for(int i = 0; i < loop_count(idle_time); i++) {
        donotoptimize();
    }
132 133 134 135 136

    /* Store our benchmarking data. */
    auto end_time = base_clock::now();
    int core_id = sched_getcpu();

Tobias Langer committed
137 138
    benchmark[task_id][task_num - 1].start = duration_cast<cpp_time_base>(start_time - start);
    benchmark[task_id][task_num - 1].end = duration_cast<cpp_time_base>(end_time - start);
139 140 141 142 143 144 145
    benchmark[task_id][task_num - 1].core_id = core_id;
}

/****
 * Main loop of task starter core.
 ****/

146 147 148
/* Make place to store the arguments for any running task instance. */
std::vector<std::pair<int,int>> task_arguments[taskset_length];

149 150 151 152 153 154 155 156 157
static void TaskStarter()
{
    /* Initialize task starter */
    auto& node = embb::mtapi::Node::GetInstance();
    /* Storage for any task which is started. */
    std::vector<embb::mtapi::Task> running;

    auto hyperperiod = calculate_hyperperiod();

158 159
    /* Initialize deadlines for every task */
    embb::mtapi::ExecutionPolicy deadline_policy[taskset_length];
160 161
    for(int i = 0; i < taskset_length; i++) {
        node.CreateAction(ACTION_ID + i + 1, IdleTask);
162
        deadline_policy[i] = embb::mtapi::ExecutionPolicy(embb_time_base(taskset[i].deadline));
163 164
    }

165 166 167 168 169 170
    using namespace std::chrono;
    start = base_clock::now();

    std::cerr << "Starting TaskStarter thread at: ";
    std::cerr << base_clock::to_time_t(start) << std::endl;

Tobias Langer committed
171 172
    auto cur_time = duration_cast<cpp_time_base>(base_clock::now() - start);

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    while(cur_time.count() < hyperperiod) {
        auto min = cpp_time_base::max();

        /* Check for every task if it has to be executed. */
        for(int i = 0; i < taskset_length; i++) {
            auto task_period = cpp_time_base(taskset[i].period);
            /* Execute always then when a next period has started, meaning when
             * cur_time / task_period is bigger than for the last check. The
             * first task_period is to let the tasks start at time 0 and not at
             * time task_period.
             */
            auto count = (cur_time + task_period) / task_period;

            /* Check how long to sleep next, either min(cur_time % period), or 
             * period if cur_time % period == 0
             */
            auto remaining = cur_time % task_period;
            remaining = remaining.count() == 0 ? task_period : remaining;
            if(remaining < min) {
                min = remaining;
            }

            if(count > taskset[i].count) {
                /* Store parameters for execution.
                 * The count may change during the execution, therefore we have
                 * to make sure that all possible running tasks can access their
                 * parameters. 
                 */
201
                task_arguments[i][count - 1] = std::make_pair(i,count);
202 203
                auto job = node.GetJob(ACTION_ID + i + 1, DOMAIN_ID);

204 205
                /* Detached TaskAttribute so we don't have to wait for task completion. */
                embb::mtapi::TaskAttributes detached_attribute;
206
                detached_attribute.SetDetached(true);
207 208 209
                detached_attribute.SetPolicy(deadline_policy[i]);

                int tmp; auto t = node.Start(job, &task_arguments[i][count - 1], &tmp, detached_attribute);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

                /* Store task to wait for it. */
                running.push_back(t);
                taskset[i].count = count;
            }
        }

        std::this_thread::sleep_for(min);
        cur_time = duration_cast<cpp_time_base>(base_clock::now() - start);
    }

    /* Wait for all started tasks to be completed. */
    for(auto& task : running) {
        task.Wait(MTAPI_INFINITE);
    }

    end = base_clock::now();
    std::cerr << "Finishing TaskStarter thread at: ";
    std::cerr << base_clock::to_time_t(end) << std::endl;
}

int main(int argc, char* argv[]) 
{
    UNUSED(argc);
    UNUSED(argv);

    /* Initialize node and set global edf as scheduling method. */
    embb::mtapi::NodeAttributes attr;
    attr.SetSchedulerMode(GLOBAL_EDF);
    embb::mtapi::Node::Initialize(DOMAIN_ID, NODE_ID, attr);
    auto& node = embb::mtapi::Node::GetInstance();

242 243 244 245
    /*
     * Initialize storage for benchmarking data. By preallocating storage for
     * every instance of every task, we don't need any synchornization.
     */
246 247 248 249
    auto hyperperiod = calculate_hyperperiod();
    for(int i = 0; i < taskset_length; i++) {
        auto job_count = hyperperiod / taskset[i].period;
        benchmark[i] = std::vector<timestamps>(job_count);
Tobias Langer committed
250
        task_arguments[i] = std::vector<std::pair<int,int>>(job_count);
251 252
    }

Tobias Langer committed
253 254
    /* Workaround, the base node action is not initialized if node attributes 
     * are set explicitly.
255 256 257 258 259 260 261 262 263 264 265
     */
    node.CreateAction(ACTION_ID, ActionFunction);

    /* Start task loop */
    TaskStarter();

    /* Print experiment results. */
    benchmark_out();

    return 0; 
}