#include "pls/internal/scheduling/scheduler.h" #include "pls/internal/scheduling/static_scheduler_memory.h" using namespace pls::internal::scheduling; #include "benchmark_runner.h" #include "benchmark_base/fft.h" using namespace comparison_benchmarks::base; void pls_conquer(fft::complex_vector::iterator data, fft::complex_vector::iterator swap_array, int n) { if (n < 2) { return; } fft::divide(data, swap_array, n); if (n <= fft::RECURSIVE_CUTOFF) { fft::conquer(data, swap_array, n / 2); fft::conquer(data + n / 2, swap_array + n / 2, n / 2); } else { scheduler::spawn([data, n, swap_array]() { pls_conquer(data, swap_array, n / 2); }); scheduler::spawn([data, n, swap_array]() { pls_conquer(data + n / 2, swap_array + n / 2, n / 2); }); scheduler::sync(); } fft::combine(data, n); } constexpr int MAX_NUM_THREADS = 8; constexpr int MAX_NUM_TASKS = 32; constexpr int MAX_STACK_SIZE = 1024 * 8; int main(int argc, char **argv) { int num_threads; string directory; benchmark_runner::read_args(argc, argv, num_threads, directory); string test_name = to_string(num_threads) + ".csv"; string full_directory = directory + "/PLS_v3/"; benchmark_runner runner{full_directory, test_name}; fft::complex_vector data = fft::generate_input(); fft::complex_vector swap_array(data.size()); static_scheduler_memory global_scheduler_memory; scheduler scheduler{global_scheduler_memory, (unsigned) num_threads}; runner.run_iterations(fft::NUM_ITERATIONS, [&]() { scheduler.perform_work([&]() { pls_conquer(data.begin(), swap_array.begin(), fft::SIZE);; }); }, fft::NUM_WARMUP_ITERATIONS); runner.commit_results(true); return 0; }