#include "pls/internal/scheduling/scheduler.h" #include "pls/internal/scheduling/static_scheduler_memory.h" #include "pls/internal/helpers/profiler.h" using namespace pls::internal::scheduling; #include #include #include #include "benchmark_runner.h" #include "benchmark_base/fft.h" using namespace comparison_benchmarks::base; void conquer(fft::complex_vector::iterator data, int n) { if (n < 2) { return; } fft::divide(data, n); if (n <= fft::RECURSIVE_CUTOFF) { fft::conquer(data, n / 2); fft::conquer(data + n / 2, n / 2); } else { scheduler::spawn([data, n]() { conquer(data, n / 2); }); scheduler::spawn([data, n]() { conquer(data + n / 2, n / 2); }); scheduler::sync(); } fft::combine(data, n); } constexpr int MAX_NUM_THREADS = 8; constexpr int MAX_NUM_TASKS = 32; constexpr int MAX_STACK_SIZE = 1024 * 4; static_scheduler_memory global_scheduler_memory; int main(int argc, char **argv) { int num_threads; string directory; benchmark_runner::read_args(argc, argv, num_threads, directory); string test_name = to_string(num_threads) + ".csv"; string full_directory = directory + "/PLS_v2/"; benchmark_runner runner{full_directory, test_name}; fft::complex_vector data = fft::generate_input(); scheduler scheduler{global_scheduler_memory, (unsigned) num_threads}; scheduler.perform_work([&]() { for (int i = 0; i < fft::NUM_WARMUP_ITERATIONS; i++) { conquer(data.begin(), fft::SIZE); } }); scheduler.perform_work([&]() { for (int i = 0; i < fft::NUM_ITERATIONS; i++) { runner.start_iteration(); conquer(data.begin(), fft::SIZE); runner.end_iteration(); } }); runner.commit_results(true); return 0; }