#include "pls/internal/scheduling/scheduler.h" #include "context_switcher/context_switcher.h" #include "pls/internal/scheduling/task_manager.h" #include "pls/internal/scheduling/thread_state.h" #include "pls/internal/base/thread.h" #include "pls/internal/base/error_handling.h" namespace pls { namespace internal { namespace scheduling { scheduler::scheduler(scheduler_memory &memory, const unsigned int num_threads, bool reuse_thread) : num_threads_{num_threads}, reuse_thread_{reuse_thread}, memory_{memory}, sync_barrier_{num_threads + 1 - reuse_thread}, terminated_{false} { if (num_threads_ > memory.max_threads()) { PLS_ERROR("Tried to create scheduler with more OS threads than pre-allocated memory."); } for (unsigned int i = 0; i < num_threads_; i++) { // Placement new is required, as the memory of `memory_` is not required to be initialized. memory.thread_state_for(i).set_scheduler(this); memory.thread_state_for(i).set_id(i); memory.thread_state_for(i).get_task_manager().set_thread_id(i); if (reuse_thread && i == 0) { continue; // Skip over first/main thread when re-using the users thread, as this one will replace the first one. } memory.thread_for(i) = base::thread(&scheduler::work_thread_main_loop, &memory_.thread_state_for(i)); } } scheduler::~scheduler() { terminate(); } void scheduler::work_thread_main_loop() { auto &scheduler = thread_state::get().get_scheduler(); while (true) { // Wait to be triggered scheduler.sync_barrier_.wait(); // Check for shutdown if (scheduler.terminated_) { return; } scheduler.work_thread_work_section(); // Sync back with main thread scheduler.sync_barrier_.wait(); } } void scheduler::work_thread_work_section() { auto &my_state = thread_state::get(); auto &my_task_manager = my_state.get_task_manager(); auto const num_threads = my_state.get_scheduler().num_threads(); auto const my_id = my_state.get_id(); if (my_state.get_id() == 0) { // Main Thread, kick off by executing the user's main code block. main_thread_starter_function_->run(); } while (!work_section_done_) { PLS_ASSERT(my_task_manager.check_task_chain(), "Must start stealing with a clean task chain."); // Steal Routine (will be continuously executed when there are no more fall through's). // TODO: move into separate function const size_t offset = my_state.get_rand() % num_threads; const size_t max_tries = num_threads; for (size_t i = 0; i < max_tries; i++) { // Perform steal size_t target = (offset + i) % num_threads; auto &target_state = my_state.get_scheduler().thread_state_for(target); bool steal_success = target_state.get_task_manager().steal_task(my_task_manager); if (steal_success) { // The stealing procedure correctly changed our chain and active task. // Now we need to perform the 'post steal' actions (manage resources and execute the stolen task). PLS_ASSERT(my_task_manager.check_task_chain_forward(&my_task_manager.get_active_task()), "We are sole owner of this chain, it has to be valid!"); // Move the traded in resource of this active task over to the stack of resources. auto *stolen_task = &my_task_manager.get_active_task(); traded_cas_field stolen_task_cas = stolen_task->external_trading_deque_cas_.load(); if (stolen_task_cas.is_filled_with_object()) { // Push the traded in resource on the resource stack to clear the traded_field for later steals/spawns. auto *exchanged_task = stolen_task_cas.get_trade_object(); my_task_manager.push_resource_on_task(stolen_task, exchanged_task); traded_cas_field empty_field; traded_cas_field expected_field; expected_field.fill_with_trade_object(exchanged_task); if (stolen_task->external_trading_deque_cas_.compare_exchange_strong(expected_field, empty_field)) { // All good, nothing more to do } else { // The last other active thread took it as its spare resource... // ...remove our traded object from the stack again (it must be empty now and no one must access it anymore). PLS_ASSERT(expected_field.is_empty(), "Must be empty, as otherwise no one will steal the 'spare traded task'."); auto current_root = stolen_task->resource_stack_root_.load(); current_root.stamp++; current_root.value = 0; stolen_task->resource_stack_root_.store(current_root); } } // Execute the stolen task by jumping to it's continuation. PLS_ASSERT(stolen_task->continuation_.valid(), "A task that we can steal must have a valid continuation for us to start working."); context_switcher::switch_context(std::move(stolen_task->continuation_)); // ...now we are done with this steal attempt, loop over. break; } } // if (!my_cont_manager.falling_through()) { // base::this_thread::sleep(5); // } } } void scheduler::terminate() { if (terminated_) { return; } terminated_ = true; sync_barrier_.wait(); for (unsigned int i = 0; i < num_threads_; i++) { if (reuse_thread_ && i == 0) { continue; } memory_.thread_for(i).join(); } } thread_state &scheduler::thread_state_for(size_t id) { return memory_.thread_state_for(id); } void scheduler::sync() { thread_state::get().get_task_manager().sync(); } } } }