#include "pls/pls.h" #include "benchmark_runner.h" #include "benchmark_base/matrix.h" #include "benchmark_base/fft.h" using namespace comparison_benchmarks::base; void pls_conquer(fft::complex_vector::iterator data, fft::complex_vector::iterator swap_array, int n) { if (n < 2) { return; } fft::divide(data, swap_array, n); if (n <= fft::RECURSIVE_CUTOFF) { fft::conquer(data, swap_array, n / 2); fft::conquer(data + n / 2, swap_array + n / 2, n / 2); } else { pls::spawn([data, n, swap_array]() { pls_conquer(data, swap_array, n / 2); }); pls::spawn_and_sync([data, n, swap_array]() { pls_conquer(data + n / 2, swap_array + n / 2, n / 2); }); } fft::combine(data, n); } constexpr int MAX_NUM_TASKS = 16; constexpr int MAX_STACK_SIZE = 4096 * 1; int main(int argc, char **argv) { auto settings = benchmark_runner::parse_parameters(argc, argv); size_t matrix_size = settings.size_; size_t fft_size = 8192; string test_name = to_string(settings.num_threads_) + ".csv"; string full_directory = settings.output_directory_ + "/PLS_v3/"; benchmark_runner runner{full_directory, test_name}; pls::scheduler scheduler{(unsigned) settings.num_threads_, MAX_NUM_TASKS, MAX_STACK_SIZE}; // Data Containers fft::complex_vector fft_data(fft_size); fft::complex_vector fft_swap_array(fft_size); fft::fill_input(fft_data); matrix::matrix matrix_a{matrix_size}; matrix::matrix matrix_b{matrix_size}; matrix::matrix matrix_result{matrix_size}; if (settings.type_ == benchmark_runner::benchmark_settings::ISOLATED) { #if PLS_PROFILING_ENABLED scheduler.get_profiler().disable_memory_measure(); runner.add_custom_stats_field("T_1"); runner.add_custom_stats_field("T_inf"); #endif printf("Running isolated measurement...\n"); runner.enable_memory_stats(); runner.pre_allocate_stats(); runner.run_iterations(settings.iterations_, [&]() { // Serial Matrix Multiplication matrix_result.multiply(matrix_a, matrix_b); // Parallel FFT scheduler.perform_work([&]() { pls_conquer(fft_data.begin(), fft_swap_array.begin(), fft_size); }); }, [&]() { fft::fill_input(fft_data); // Reset data before each run }, [&]() { #if PLS_PROFILING_ENABLED runner.store_custom_stat("T_1", scheduler.get_profiler().current_run().t_1_); runner.store_custom_stat("T_inf", scheduler.get_profiler().current_run().t_inf_); #endif }); runner.commit_results(true); } else { printf("Running periodic measurement...\n"); runner.enable_wall_time_stats(); runner.pre_allocate_stats(); runner.run_periodic(settings.iterations_, settings.interval_period_, settings.interval_deadline_, [&]() { // Serial Matrix Multiplication matrix_result.multiply(matrix_a, matrix_b); // Parallel FFT scheduler.perform_work([&]() { pls_conquer(fft_data.begin(), fft_swap_array.begin(), fft_size); }); // Reset data before each run fft::fill_input(fft_data); }); runner.commit_results(true); } return 0; }