/* * Copyright (c) 2014, Siemens AG. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef CONTAINERS_CPP_TEST_QUEUE_TEST_INL_H_ #define CONTAINERS_CPP_TEST_QUEUE_TEST_INL_H_ #include #include namespace embb { namespace containers { namespace test { template QueueTest::QueueTest() : n_threads(static_cast (partest::TestSuite::GetDefaultNumThreads())), n_iterations(200), n_queue_elements_per_thread(100), n_queue_elements(n_queue_elements_per_thread*n_threads), queueSize(0) { CreateUnit("QueueTestSingleThreadEnqueueDequeue"). Pre(&QueueTest::QueueTestSingleThreadEnqueueDequeue_Pre, this). Add(&QueueTest::QueueTestSingleThreadEnqueueDequeue_ThreadMethod, this). Post(&QueueTest::QueueTestSingleThreadEnqueueDequeue_Post, this); CreateUnit("QueueTestTwoThreadsSingleProducerSingleConsumer"). Pre(&QueueTest::QueueTestSingleProducedSingleConsumer_Pre, this). Add(&QueueTest::QueueTestSingleProducedSingleConsumer_ThreadMethod, this, 2, TOTAL_PRODUCE_CONSUME_COUNT). Post(&QueueTest::QueueTestSingleProducedSingleConsumer_Post, this); #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable:4127) #endif if (MultipleProducers == true && MultipleConsumers == true) { #ifdef _MSC_VER #pragma warning(pop) #endif CreateUnit("QueueTestMultipleThreadsMultipleProducerMultipleConsumer"). Pre(&QueueTest::QueueTestMultipleProducerMultipleConsumer_Pre, this). Add(&QueueTest::QueueTestMultipleProducerMultipleConsumer_ThreadMethod, this, static_cast(n_threads), static_cast(n_iterations)). Post(&QueueTest::QueueTestMultipleProducerMultipleConsumer_Post, this); } } template void QueueTest:: QueueTestMultipleProducerMultipleConsumer_Pre() { embb_internal_thread_index_reset(); queue = new Queue_t(static_cast(n_queue_elements)); thread_local_vectors = new std::vector[static_cast(n_threads)]; for (int i = 0; i != n_threads; ++i) { int offset = n_queue_elements_per_thread * 2; for (int i2 = 0; i2 != n_queue_elements_per_thread; ++i2) { int push_element = i2 + (offset*i); thread_local_vectors[i].push_back(push_element); expected_queue_elements.push_back(push_element); } } } template void QueueTest:: QueueTestMultipleProducerMultipleConsumer_Post() { std::vector produced; for (int i = 0; i != n_threads; ++i) { std::vector& loc_elements = thread_local_vectors[i]; for (std::vector::iterator it = loc_elements.begin(); it != loc_elements.end(); ++it) { produced.push_back(*it); } } PT_ASSERT(produced.size() == expected_queue_elements.size()); std::sort(expected_queue_elements.begin(), expected_queue_elements.end()); std::sort(produced.begin(), produced.end()); for (unsigned int i = 0; i != static_cast(produced.size()); ++i) { PT_ASSERT(expected_queue_elements[i] == produced[i]); } delete[] thread_local_vectors; delete queue; } template void QueueTest:: QueueTestMultipleProducerMultipleConsumer_ThreadMethod() { unsigned int thread_index; int return_val = embb_internal_thread_index(&thread_index); PT_ASSERT(EMBB_SUCCESS == return_val); std::vector& my_elements = thread_local_vectors[thread_index]; for (std::vector::iterator it = my_elements.begin(); it != my_elements.end(); ++it) { int enq = *it; bool success = queue->TryEnqueue(enq); PT_ASSERT(success == true); } my_elements.clear(); for (int i = 0; i != n_queue_elements_per_thread; ++i) { int dequ; bool success = queue->TryDequeue(dequ); PT_ASSERT(success == true); my_elements.push_back(dequ); } } template void QueueTest:: QueueTestSingleProducedSingleConsumer_Pre() { embb_internal_thread_index_reset(); queue = new Queue_t(QUEUE_SIZE); thread_selector_producer = -1; produce_count = 0; consume_count = 0; consumed_elements.clear(); produced_elements.clear(); } template void QueueTest:: QueueTestSingleProducedSingleConsumer_Post() { embb_atomic_memory_barrier(); ::std::sort(consumed_elements.begin(), consumed_elements.end()); ::std::sort(produced_elements.begin(), produced_elements.end()); PT_ASSERT(consumed_elements.size() == produced_elements.size()); for (unsigned int i = 0; i != static_cast(consumed_elements.size()); i++) { PT_ASSERT(consumed_elements[i] == produced_elements[i]); } delete queue; } template void QueueTest:: QueueTestSingleProducedSingleConsumer_ThreadMethod() { unsigned int thread_index; int return_val = embb_internal_thread_index(&thread_index); PT_ASSERT(return_val == EMBB_SUCCESS); if (thread_selector_producer == -1) { int expected = -1; thread_selector_producer.CompareAndSwap(expected, static_cast(thread_index)); while (thread_selector_producer == -1) {} } // we are the producer if (static_cast(thread_selector_producer.Load()) == thread_index) { while (produce_count >= QUEUE_SIZE) {} int random_var = rand() % 10000; bool success = queue->TryEnqueue(random_var); PT_ASSERT(success == true); produce_count++; produced_elements.push_back(random_var); // we are the consumer } else { while (consume_count < TOTAL_PRODUCE_CONSUME_COUNT) { consume_count++; while (produce_count == 0) {} int consumed; bool success = queue->TryDequeue(consumed); PT_ASSERT(success == true); produce_count--; consumed_elements.push_back(consumed); } } } template void QueueTest:: QueueTestSingleThreadEnqueueDequeue_ThreadMethod() { for (int i = 0; i != QUEUE_SIZE; ++i) { bool success = queue->TryEnqueue(i * 133); PT_ASSERT(success == true); } for (int i = 0; i != QUEUE_SIZE; ++i) { int dequ = -1; bool success = queue->TryDequeue(dequ); PT_ASSERT(success == true); PT_ASSERT(dequ == i * 133); } } template void QueueTest:: QueueTestSingleThreadEnqueueDequeue_Pre() { queue = new Queue_t(QUEUE_SIZE); } template void QueueTest:: QueueTestSingleThreadEnqueueDequeue_Post() { delete queue; } } // namespace test } // namespace containers } // namespace embb #endif // CONTAINERS_CPP_TEST_QUEUE_TEST_INL_H_