/* * Copyright (c) 2014, Siemens AG. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef EMBB_ALGORITHMS_INTERNAL_FOR_EACH_INL_H_ #define EMBB_ALGORITHMS_INTERNAL_FOR_EACH_INL_H_ #include #include #include #include #include namespace embb { namespace algorithms { namespace internal { template class ForEachFunctor { public: /** * Constructs a for-each functor with arguments. */ ForEachFunctor(RAI first, RAI last, Function unary, const ExecutionPolicy& policy, size_t block_size) : first_(first), last_(last), unary_(unary), policy_(policy), block_size_(block_size) { } void Action(mtapi::TaskContext&) { size_t distance = static_cast(std::distance(first_, last_)); if (distance == 0) return; if (distance <= block_size_) { // leaf case -> do work for (RAI curIter(first_); curIter != last_; ++curIter) { unary_(*curIter); } } else { // recurse further ChunkPartitioner partitioner(first_, last_, 2); ForEachFunctor functorL(partitioner[0].GetFirst(), partitioner[0].GetLast(), unary_, policy_, block_size_); ForEachFunctor functorR(partitioner[1].GetFirst(), partitioner[1].GetLast(), unary_, policy_, block_size_); mtapi::Node& node = mtapi::Node::GetInstance(); mtapi::Task taskL = node.Spawn(mtapi::Action(base::MakeFunction( functorL, &ForEachFunctor::Action), policy_.GetAffinity()), policy_.GetPriority()); mtapi::Task taskR = node.Spawn(mtapi::Action(base::MakeFunction( functorR, &ForEachFunctor::Action), policy_.GetAffinity()), policy_.GetPriority()); taskL.Wait(MTAPI_INFINITE); taskR.Wait(MTAPI_INFINITE); } } private: RAI first_; RAI last_; Function unary_; const ExecutionPolicy& policy_; size_t block_size_; /** * Disables assignment. */ ForEachFunctor& operator=(const ForEachFunctor&); }; template void ForEachRecurcive(RAI first, RAI last, Function unary, const ExecutionPolicy& policy, size_t block_size) { typedef typename std::iterator_traits::difference_type difference_type; difference_type distance = std::distance(first, last); assert(distance > 0); mtapi::Node& node = mtapi::Node::GetInstance(); // Determine actually used block size if (block_size == 0) { block_size = (static_cast(distance) / node.GetCoreCount()); if (block_size == 0) { block_size = 1; } } // Perform check of task number sufficiency if (((distance / block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) { EMBB_THROW(embb::base::ErrorException, "Not enough MTAPI tasks available " "to perform the parallel foreach loop"); } ForEachFunctor functor(first, last, unary, policy, block_size); mtapi::Task task = node.Spawn(mtapi::Action( base::MakeFunction(functor, &ForEachFunctor::Action), policy.GetAffinity()), policy.GetPriority()); task.Wait(MTAPI_INFINITE); } template void ForEachIteratorCheck(RAI first, RAI last, Function unary, const ExecutionPolicy& policy, size_t block_size, std::random_access_iterator_tag) { return ForEachRecurcive(first, last, unary, policy, block_size); } } // namespace internal template void ForEach(RAI first, RAI last, Function unary, const ExecutionPolicy& policy, size_t block_size) { typename std::iterator_traits::iterator_category category; internal::ForEachIteratorCheck(first, last, unary, policy, block_size, category); } } // namespace algorithms } // namespace embb #endif // EMBB_ALGORITHMS_INTERNAL_FOR_EACH_INL_H_