/* * Copyright (c) 2014-2016, Siemens AG. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef EMBB_DATAFLOW_INTERNAL_PROCESS_H_ #define EMBB_DATAFLOW_INTERNAL_PROCESS_H_ #include #include #include #include #include namespace embb { namespace dataflow { namespace internal { template class Process; template < bool Serial, typename I1, typename I2, typename I3, typename I4, typename I5, typename O1, typename O2, typename O3, typename O4, typename O5> class Process< Serial, Inputs, Outputs > : public Node , public ClockListener { public: typedef Inputs InputsType; typedef Outputs OutputsType; typedef ProcessExecutor< InputsType, OutputsType > ExecutorType; typedef typename ExecutorType::FunctionType FunctionType; Process(Scheduler * sched, FunctionType function) : inputs_() , executor_(function) , action_(NULL) , slices_(0) { next_clock_ = 0; queued_clock_ = 0; bool ordered = Serial; if (ordered) { queue_id_ = GetNextProcessID(); } else { queue_id_ = 0; } inputs_.SetListener(this); SetScheduler(sched); } ~Process() { if (NULL != action_) { embb::base::Allocation::Free(action_); } } virtual bool HasInputs() const { return inputs_.Size() > 0; } virtual bool HasOutputs() const { return outputs_.Size() > 0; } virtual void Run(int clock) { executor_.Execute(clock, inputs_, outputs_); } virtual bool IsFullyConnected() { return inputs_.IsFullyConnected() && outputs_.IsFullyConnected(); } virtual bool IsSequential() { return Serial; } virtual bool HasCycle() { return outputs_.HasCycle(this); } InputsType & GetInputs() { return inputs_; } template typename TypeAt::Result & GetInput() { return inputs_.template Get(); } OutputsType & GetOutputs() { return outputs_; } template typename TypeAt::Result & GetOutput() { return outputs_.template Get(); } template T & operator >> (T & target) { GetOutput<0>() >> target.template GetInput<0>(); return target; } virtual void OnClock(int clock) { assert(inputs_.AreAtClock(clock)); bool ordered = Serial; if (ordered) { bool retry = true; while (retry) { int clk = next_clock_; int clk_end = clk + slices_; int clk_res = clk; for (int ii = clk; ii < clk_end; ii++) { if (!inputs_.AreAtClock(ii)) { break; } clk_res++; } if (clk_res > clk) { if (next_clock_.CompareAndSwap(clk, clk_res)) { while (queued_clock_.Load() < clk) continue; for (int ii = clk; ii < clk_res; ii++) { const int idx = ii % slices_; action_[idx] = Action(this, ii); sched_->Enqueue(queue_id_, action_[idx], policy_); } queued_clock_.Store(clk_res); retry = false; } } else { retry = false; } } } else { const int idx = clock % slices_; action_[idx] = Action(this, clock); sched_->Start(action_[idx], policy_); } } virtual bool OnHasCycle(ClockListener * node) { ClockListener * this_node = this; if (this_node == node) { return true; } else { return outputs_.HasCycle(node); } } private: InputsType inputs_; OutputsType outputs_; ExecutorType executor_; Action * action_; embb::base::Atomic next_clock_; embb::base::Atomic queued_clock_; int queue_id_; int slices_; virtual void SetSlices(int slices) { if (0 < slices_) { embb::base::Allocation::Free(action_); action_ = NULL; } slices_ = slices; inputs_.SetSlices(slices); if (0 < slices_) { action_ = reinterpret_cast( embb::base::Allocation::Allocate( sizeof(Action)*slices_)); for (int ii = 0; ii < slices_; ii++) { action_[ii] = Action(); } } } }; } // namespace internal } // namespace dataflow } // namespace embb #endif // EMBB_DATAFLOW_INTERNAL_PROCESS_H_