Commit ffa2f18a by Christian Kern

Merge branch 'development' into embb9_tarball_script

parents 938c3be8 ad71c970
...@@ -37,42 +37,45 @@ namespace internal { ...@@ -37,42 +37,45 @@ namespace internal {
template<typename ValueType> template<typename ValueType>
class ValueComparisonFunction{ class ValueComparisonFunction{
public: public:
explicit ValueComparisonFunction(const ValueType &value) explicit ValueComparisonFunction(const ValueType& value)
:value_(value) {} : value_(value) {}
ValueComparisonFunction(const ValueComparisonFunction &other) ValueComparisonFunction(const ValueComparisonFunction& other)
:value_(other.value_) {} : value_(other.value_) {}
template<typename ElementType> template<typename ElementType>
int operator()(ElementType element) { int operator()(ElementType element) {
if(element == value_) if (element == value_) {
return 1; return 1;
else } else {
return 0; return 0;
} }
}
private: private:
const ValueType &value_; const ValueType &value_;
ValueComparisonFunction &operator=(const ValueComparisonFunction &other); ValueComparisonFunction &operator=(
const ValueComparisonFunction& other);
}; };
template<typename Function> template<typename Function>
class FunctionComparisonFunction{ class FunctionComparisonFunction{
public: public:
explicit FunctionComparisonFunction(Function function) explicit FunctionComparisonFunction(Function function)
:function_(function) {} : function_(function) {}
FunctionComparisonFunction(const FunctionComparisonFunction &other) FunctionComparisonFunction(const FunctionComparisonFunction &other)
:function_(other.function_) {} : function_(other.function_) {}
template<typename ElementType> template<typename ElementType>
int operator()(ElementType element) { int operator()(ElementType element) {
if(function_(element)) if (function_(element)) {
return 1; return 1;
else } else {
return 0; return 0;
} }
}
private: private:
Function function_; Function function_;
FunctionComparisonFunction &operator=(const FunctionComparisonFunction & FunctionComparisonFunction &operator=(
other); const FunctionComparisonFunction& other);
}; };
} // namespace internal } // namespace internal
......
...@@ -45,44 +45,54 @@ class ForEachFunctor { ...@@ -45,44 +45,54 @@ class ForEachFunctor {
/** /**
* Constructs a for-each functor with arguments. * Constructs a for-each functor with arguments.
*/ */
ForEachFunctor(RAI first, RAI last, Function unary, ForEachFunctor(size_t chunk_first, size_t chunk_last, Function unary,
const embb::mtapi::ExecutionPolicy& policy, size_t block_size) const embb::mtapi::ExecutionPolicy& policy,
: first_(first), last_(last), unary_(unary), policy_(policy), const BlockSizePartitioner<RAI>& partitioner)
block_size_(block_size) { : chunk_first_(chunk_first), chunk_last_(chunk_last),
unary_(unary), policy_(policy), partitioner_(partitioner) {
} }
void Action(mtapi::TaskContext&) { void Action(mtapi::TaskContext&) {
size_t distance = static_cast<size_t>(std::distance(first_, last_)); if (chunk_first_ == chunk_last_) {
if (distance == 0) return; // Leaf case, recursed to single chunk. Do work on chunk:
if (distance <= block_size_) { // leaf case -> do work ChunkDescriptor<RAI> chunk = partitioner_[chunk_first_];
for (RAI curIter(first_); curIter != last_; ++curIter) { RAI first = chunk.GetFirst();
unary_(*curIter); RAI last = chunk.GetLast();
for (RAI it = first; it != last; ++it) {
unary_(*it);
} }
} else { // recurse further } else {
ChunkPartitioner<RAI> partitioner(first_, last_, 2); // Recurse further:
ForEachFunctor<RAI, Function> functorL(partitioner[0].GetFirst(), size_t chunk_split_index = (chunk_first_ + chunk_last_) / 2;
partitioner[0].GetLast(), unary_, policy_, block_size_); // Split chunks into left / right branches:
ForEachFunctor<RAI, Function> functorR(partitioner[1].GetFirst(), self_t functor_l(chunk_first_,
partitioner[1].GetLast(), unary_, policy_, block_size_); chunk_split_index,
unary_, policy_, partitioner_);
mtapi::Node& node = mtapi::Node::GetInstance(); self_t functor_r(chunk_split_index + 1,
mtapi::Task taskL = node.Spawn(mtapi::Action(base::MakeFunction( chunk_last_,
functorL, &ForEachFunctor<RAI, Function>::Action), unary_, policy_, partitioner_);
mtapi::Task task_l = mtapi::Node::GetInstance().Spawn(
mtapi::Action(
base::MakeFunction(functor_l, &self_t::Action),
policy_)); policy_));
mtapi::Task taskR = node.Spawn(mtapi::Action(base::MakeFunction( mtapi::Task task_r = mtapi::Node::GetInstance().Spawn(
functorR, &ForEachFunctor<RAI, Function>::Action), mtapi::Action(
base::MakeFunction(functor_r, &self_t::Action),
policy_)); policy_));
taskL.Wait(MTAPI_INFINITE); task_l.Wait(MTAPI_INFINITE);
taskR.Wait(MTAPI_INFINITE); task_r.Wait(MTAPI_INFINITE);
} }
} }
private: private:
RAI first_; typedef ForEachFunctor<RAI, Function> self_t;
RAI last_;
private:
size_t chunk_first_;
size_t chunk_last_;
Function unary_; Function unary_;
const embb::mtapi::ExecutionPolicy& policy_; const embb::mtapi::ExecutionPolicy& policy_;
size_t block_size_; const BlockSizePartitioner<RAI>& partitioner_;
/** /**
* Disables assignment. * Disables assignment.
...@@ -95,21 +105,33 @@ void ForEachRecursive(RAI first, RAI last, Function unary, ...@@ -95,21 +105,33 @@ void ForEachRecursive(RAI first, RAI last, Function unary,
const embb::mtapi::ExecutionPolicy& policy, size_t block_size) { const embb::mtapi::ExecutionPolicy& policy, size_t block_size) {
typedef typename std::iterator_traits<RAI>::difference_type difference_type; typedef typename std::iterator_traits<RAI>::difference_type difference_type;
difference_type distance = std::distance(first, last); difference_type distance = std::distance(first, last);
assert(distance > 0); if (distance == 0) {
return;
} else if (distance < 0) {
EMBB_THROW(embb::base::ErrorException, "Negative range for ForEach");
}
unsigned int num_cores = policy.GetCoreCount();
if (num_cores == 0) {
EMBB_THROW(embb::base::ErrorException, "No cores in execution policy");
}
mtapi::Node& node = mtapi::Node::GetInstance(); mtapi::Node& node = mtapi::Node::GetInstance();
// Determine actually used block size // Determine actually used block size
if (block_size == 0) { if (block_size == 0) {
block_size = (static_cast<size_t>(distance) / node.GetCoreCount()); block_size = (static_cast<size_t>(distance) / num_cores);
if (block_size == 0) { if (block_size == 0) {
block_size = 1; block_size = 1;
} }
} }
// Perform check of task number sufficiency // Check task number sufficiency
if (((distance / block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) { if (((distance / block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) {
EMBB_THROW(embb::base::ErrorException, "Not enough MTAPI tasks available " EMBB_THROW(embb::base::ErrorException,
"to perform the parallel foreach loop"); "Not enough MTAPI tasks available for parallel foreach");
} }
ForEachFunctor<RAI, Function> functor(first, last, unary, policy, block_size);
BlockSizePartitioner<RAI> partitioner(first, last, block_size);
ForEachFunctor<RAI, Function> functor(0,
partitioner.Size() - 1,
unary, policy, partitioner);
mtapi::Task task = node.Spawn(mtapi::Action( mtapi::Task task = node.Spawn(mtapi::Action(
base::MakeFunction(functor, base::MakeFunction(functor,
&ForEachFunctor<RAI, Function>::Action), &ForEachFunctor<RAI, Function>::Action),
...@@ -127,7 +149,7 @@ void ForEachIteratorCheck(RAI first, RAI last, Function unary, ...@@ -127,7 +149,7 @@ void ForEachIteratorCheck(RAI first, RAI last, Function unary,
} // namespace internal } // namespace internal
template<typename RAI, typename Function> template<typename RAI, typename Function>
void ForEach(RAI first, RAI last, Function unary, void ForEach(RAI first, const RAI last, Function unary,
const embb::mtapi::ExecutionPolicy& policy, size_t block_size) { const embb::mtapi::ExecutionPolicy& policy, size_t block_size) {
typename std::iterator_traits<RAI>::iterator_category category; typename std::iterator_traits<RAI>::iterator_category category;
internal::ForEachIteratorCheck(first, last, unary, policy, block_size, internal::ForEachIteratorCheck(first, last, unary, policy, block_size,
......
...@@ -71,8 +71,8 @@ const ChunkDescriptor<ForwardIterator> ...@@ -71,8 +71,8 @@ const ChunkDescriptor<ForwardIterator>
ForwardIterator last_new = first_new; ForwardIterator last_new = first_new;
if (index == elements_count / chunkSize) { if (index >= chunks - 1) {
std::advance(last_new, elements_count % chunkSize); last_new = last;
} else { } else {
std::advance(last_new, chunkSize); std::advance(last_new, chunkSize);
} }
...@@ -94,7 +94,7 @@ ChunkPartitioner<ForwardIterator>::ChunkPartitioner(ForwardIterator first, ...@@ -94,7 +94,7 @@ ChunkPartitioner<ForwardIterator>::ChunkPartitioner(ForwardIterator first,
} else { } else {
// if no concrete chunk size was given, use number of cores... // if no concrete chunk size was given, use number of cores...
mtapi::Node& node = mtapi::Node::GetInstance(); mtapi::Node& node = mtapi::Node::GetInstance();
size = node.GetCoreCount(); size = node.GetWorkerThreadCount();
} }
elements_count = static_cast<size_t>(std::distance(first, last)); elements_count = static_cast<size_t>(std::distance(first, last));
......
...@@ -186,16 +186,26 @@ class QuickSortFunctor { ...@@ -186,16 +186,26 @@ class QuickSortFunctor {
QuickSortFunctor(const QuickSortFunctor&); QuickSortFunctor(const QuickSortFunctor&);
}; };
} // namespace internal
template <typename RAI, typename ComparisonFunction> template <typename RAI, typename ComparisonFunction>
void QuickSort(RAI first, RAI last, ComparisonFunction comparison, void QuickSortIteratorCheck(RAI first, RAI last,
const embb::mtapi::ExecutionPolicy& policy, size_t block_size) { ComparisonFunction comparison,
const embb::mtapi::ExecutionPolicy& policy,
size_t block_size,
std::random_access_iterator_tag) {
embb::mtapi::Node& node = embb::mtapi::Node::GetInstance(); embb::mtapi::Node& node = embb::mtapi::Node::GetInstance();
typename std::iterator_traits<RAI>::difference_type distance = last - first; typedef typename std::iterator_traits<RAI>::difference_type difference_type;
assert(distance > 0); difference_type distance = std::distance(first, last);
if (distance == 0) {
return;
} else if (distance < 0) {
EMBB_THROW(embb::base::ErrorException, "Negative range for QuickSort");
}
unsigned int num_cores = policy.GetCoreCount();
if (num_cores == 0) {
EMBB_THROW(embb::base::ErrorException, "No cores in execution policy");
}
if (block_size == 0) { if (block_size == 0) {
block_size = (static_cast<size_t>(distance) / node.GetCoreCount()); block_size = (static_cast<size_t>(distance) / num_cores);
if (block_size == 0) if (block_size == 0)
block_size = 1; block_size = 1;
} }
...@@ -203,13 +213,23 @@ void QuickSort(RAI first, RAI last, ComparisonFunction comparison, ...@@ -203,13 +213,23 @@ void QuickSort(RAI first, RAI last, ComparisonFunction comparison,
EMBB_THROW(embb::base::ErrorException, EMBB_THROW(embb::base::ErrorException,
"Not enough MTAPI tasks available for performing quick sort"); "Not enough MTAPI tasks available for performing quick sort");
} }
internal::QuickSortFunctor<RAI, ComparisonFunction> functor( QuickSortFunctor<RAI, ComparisonFunction> functor(
first, last, comparison, policy, block_size); first, last, comparison, policy, block_size);
mtapi::Task task = node.Spawn(mtapi::Action(base::MakeFunction( mtapi::Task task = node.Spawn(mtapi::Action(base::MakeFunction(
functor, &internal::QuickSortFunctor<RAI, ComparisonFunction>::Action))); functor, &QuickSortFunctor<RAI, ComparisonFunction>::Action)));
task.Wait(MTAPI_INFINITE); task.Wait(MTAPI_INFINITE);
} }
} // namespace internal
template <typename RAI, typename ComparisonFunction>
void QuickSort(RAI first, RAI last, ComparisonFunction comparison,
const embb::mtapi::ExecutionPolicy& policy, size_t block_size) {
typedef typename std::iterator_traits<RAI>::iterator_category category;
internal::QuickSortIteratorCheck(first, last, comparison,
policy, block_size, category());
}
} // namespace algorithms } // namespace algorithms
} // namespace embb } // namespace embb
......
...@@ -42,45 +42,55 @@ template<typename RAI, typename ReturnType, typename ReductionFunction, ...@@ -42,45 +42,55 @@ template<typename RAI, typename ReturnType, typename ReductionFunction,
typename TransformationFunction> typename TransformationFunction>
class ReduceFunctor { class ReduceFunctor {
public: public:
ReduceFunctor(RAI first, RAI last, ReturnType neutral, ReduceFunctor(size_t chunk_first, size_t chunk_last,
ReturnType neutral,
ReductionFunction reduction, ReductionFunction reduction,
TransformationFunction transformation, TransformationFunction transformation,
const embb::mtapi::ExecutionPolicy &policy, size_t block_size, const embb::mtapi::ExecutionPolicy& policy,
const BlockSizePartitioner<RAI>& partitioner,
ReturnType& result) ReturnType& result)
: : chunk_first_(chunk_first), chunk_last_(chunk_last), neutral_(neutral),
first_(first), last_(last), neutral_(neutral), reduction_(reduction), reduction_(reduction), transformation_(transformation), policy_(policy),
transformation_(transformation), policy_(policy), partitioner_(partitioner), result_(result) {
block_size_(block_size), result_(result) {
} }
void Action(mtapi::TaskContext&) { void Action(mtapi::TaskContext&) {
if (first_ == last_) { if (chunk_first_ == chunk_last_) {
return; // Leaf case, recursed to single chunk. Do work on chunk:
} ChunkDescriptor<RAI> chunk = partitioner_[chunk_first_];
size_t distance = static_cast<size_t>(std::distance(first_, last_)); RAI first = chunk.GetFirst();
if (distance <= block_size_) { // leaf case -> do work RAI last = chunk.GetLast();
ReturnType result(neutral_); ReturnType result(neutral_);
for (RAI iter = first_; iter != last_; ++iter) { for (RAI it = first; it != last; ++it) {
result = reduction_(result, transformation_(*iter)); result = reduction_(result, transformation_(*it));
} }
result_ = result; result_ = result;
} else { // recurse further } else {
internal::ChunkPartitioner<RAI> partitioner(first_, last_, 2); // Recurse further:
size_t chunk_split_index = (chunk_first_ + chunk_last_) / 2;
// Split chunks into left / right branches:
ReturnType result_l(neutral_); ReturnType result_l(neutral_);
ReturnType result_r(neutral_); ReturnType result_r(neutral_);
ReduceFunctor functor_l(partitioner[0].GetFirst(), self_t functor_l(chunk_first_,
partitioner[0].GetLast(), chunk_split_index,
neutral_, reduction_, transformation_, policy_, neutral_, reduction_, transformation_, policy_,
block_size_, result_l); partitioner_,
ReduceFunctor functor_r(partitioner[1].GetFirst(), result_l);
partitioner[1].GetLast(), self_t functor_r(chunk_split_index + 1,
chunk_last_,
neutral_, reduction_, transformation_, policy_, neutral_, reduction_, transformation_, policy_,
block_size_, result_r); partitioner_,
mtapi::Node& node = mtapi::Node::GetInstance(); result_r);
mtapi::Task task_l = node.Spawn(mtapi::Action(base::MakeFunction( mtapi::Task task_l = mtapi::Node::GetInstance().Spawn(
functor_l, &ReduceFunctor::Action), policy_)); mtapi::Action(
mtapi::Task task_r = node.Spawn(mtapi::Action(base::MakeFunction( base::MakeFunction(
functor_r, &ReduceFunctor::Action), policy_)); functor_l, &self_t::Action),
policy_));
mtapi::Task task_r = mtapi::Node::GetInstance().Spawn(
mtapi::Action(
base::MakeFunction(
functor_r, &self_t::Action),
policy_));
task_l.Wait(MTAPI_INFINITE); task_l.Wait(MTAPI_INFINITE);
task_r.Wait(MTAPI_INFINITE); task_r.Wait(MTAPI_INFINITE);
result_ = reduction_(result_l, result_r); result_ = reduction_(result_l, result_r);
...@@ -88,15 +98,23 @@ class ReduceFunctor { ...@@ -88,15 +98,23 @@ class ReduceFunctor {
} }
private: private:
RAI first_; typedef ReduceFunctor<RAI, ReturnType,
RAI last_; ReductionFunction,
TransformationFunction> self_t;
private:
size_t chunk_first_;
size_t chunk_last_;
ReturnType neutral_; ReturnType neutral_;
ReductionFunction reduction_; ReductionFunction reduction_;
TransformationFunction transformation_; TransformationFunction transformation_;
const embb::mtapi::ExecutionPolicy& policy_; const embb::mtapi::ExecutionPolicy& policy_;
size_t block_size_; const BlockSizePartitioner<RAI>& partitioner_;
ReturnType& result_; ReturnType& result_;
/**
* Disables assignment and copy-construction.
*/
ReduceFunctor& operator=(const ReduceFunctor&); ReduceFunctor& operator=(const ReduceFunctor&);
ReduceFunctor(const ReduceFunctor&); ReduceFunctor(const ReduceFunctor&);
}; };
...@@ -110,27 +128,42 @@ ReturnType ReduceRecursive(RAI first, RAI last, ReturnType neutral, ...@@ -110,27 +128,42 @@ ReturnType ReduceRecursive(RAI first, RAI last, ReturnType neutral,
size_t block_size) { size_t block_size) {
typedef typename std::iterator_traits<RAI>::difference_type difference_type; typedef typename std::iterator_traits<RAI>::difference_type difference_type;
difference_type distance = std::distance(first, last); difference_type distance = std::distance(first, last);
assert(distance > 0); if (distance == 0) {
return neutral;
} else if (distance < 0) {
EMBB_THROW(embb::base::ErrorException, "Negative range for Reduce");
}
unsigned int num_cores = policy.GetCoreCount();
if (num_cores == 0) {
EMBB_THROW(embb::base::ErrorException, "No cores in execution policy");
}
mtapi::Node& node = mtapi::Node::GetInstance(); mtapi::Node& node = mtapi::Node::GetInstance();
size_t used_block_size = block_size; // Determine actually used block size
if (used_block_size == 0) { if (block_size == 0) {
used_block_size = static_cast<size_t>(distance) / node.GetCoreCount(); block_size = (static_cast<size_t>(distance) / num_cores);
if (used_block_size == 0) used_block_size = 1; if (block_size == 0) {
block_size = 1;
} }
}
if (((distance / used_block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) { // Perform check of task number sufficiency
if (((distance / block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) {
EMBB_THROW(embb::base::ErrorException, EMBB_THROW(embb::base::ErrorException,
"Number of computation tasks required in reduction would " "Number of computation tasks required in reduction would "
"exceed MTAPI maximum number of tasks"); "exceed MTAPI maximum number of tasks");
} }
ReturnType result = neutral;
typedef ReduceFunctor<RAI, ReturnType, ReductionFunction, typedef ReduceFunctor<RAI, ReturnType, ReductionFunction,
TransformationFunction> Functor; TransformationFunction> Functor;
Functor functor(first, last, neutral, reduction, transformation, policy, BlockSizePartitioner<RAI> partitioner(first, last, block_size);
used_block_size, result); ReturnType result = neutral;
mtapi::Task task = node.Spawn(mtapi::Action(base::MakeFunction( Functor functor(0,
partitioner.Size() - 1,
neutral,
reduction, transformation,
policy,
partitioner,
result);
mtapi::Task task = node.Spawn(
mtapi::Action(base::MakeFunction(
functor, &Functor::Action), policy)); functor, &Functor::Action), policy));
task.Wait(MTAPI_INFINITE); task.Wait(MTAPI_INFINITE);
return result; return result;
......
...@@ -41,73 +41,79 @@ template<typename RAIIn, typename RAIOut, typename ReturnType, ...@@ -41,73 +41,79 @@ template<typename RAIIn, typename RAIOut, typename ReturnType,
typename ScanFunction, typename TransformationFunction> typename ScanFunction, typename TransformationFunction>
class ScanFunctor { class ScanFunctor {
public: public:
ScanFunctor(RAIIn first, RAIIn last, RAIOut output_iterator, ScanFunctor(size_t chunk_first, size_t chunk_last, RAIOut output_iterator,
ReturnType neutral, ScanFunction scan, ReturnType neutral, ScanFunction scan,
TransformationFunction transformation, TransformationFunction transformation,
const embb::mtapi::ExecutionPolicy& policy, const embb::mtapi::ExecutionPolicy& policy,
size_t block_size, ReturnType* tree_values, size_t node_id, const BlockSizePartitioner<RAIIn>& partitioner,
ReturnType* tree_values, size_t node_id,
bool going_down) bool going_down)
: policy_(policy), first_(first), last_(last), : policy_(policy), chunk_first_(chunk_first), chunk_last_(chunk_last),
output_iterator_(output_iterator), scan_(scan), output_iterator_(output_iterator), scan_(scan),
transformation_(transformation), transformation_(transformation),
neutral_(neutral), block_size_(block_size), tree_values_(tree_values), neutral_(neutral), partitioner_(partitioner), tree_values_(tree_values),
node_id_(node_id), parent_value_(neutral), is_first_pass_(going_down) { node_id_(node_id), parent_value_(neutral), is_first_pass_(going_down) {
} }
void Action(mtapi::TaskContext&) { void Action(mtapi::TaskContext&) {
if (first_ == last_) { if (chunk_first_ == chunk_last_) {
return; ChunkDescriptor<RAIIn> chunk = partitioner_[chunk_first_];
} RAIIn iter_in = chunk.GetFirst();
size_t distance = static_cast<size_t>(std::distance(first_, last_)); RAIIn last_in = chunk.GetLast();
if (distance <= block_size_) { // leaf case -> do work
if (is_first_pass_) {
RAIIn iter_in = first_;
RAIOut iter_out = output_iterator_; RAIOut iter_out = output_iterator_;
ReturnType result = transformation_(*first_); // leaf case -> do work
if (is_first_pass_) {
ReturnType result = transformation_(*iter_in);
*iter_out = result; *iter_out = result;
++iter_in; ++iter_in;
++iter_out; ++iter_out;
while (iter_in != last_) { for (; iter_in != last_in; ++iter_in, ++iter_out) {
result = scan_(result, transformation_(*iter_in)); result = scan_(result, transformation_(*iter_in));
*iter_out = result; *iter_out = result;
++iter_in;
++iter_out;
} }
SetTreeValue(result); SetTreeValue(result);
} else { // Second pass } else {
RAIIn iter_in = first_; // Second pass
RAIOut iter_out = output_iterator_; for (; iter_in != last_in; ++iter_in, ++iter_out) {
while (iter_in != last_) {
*iter_out = scan_(parent_value_, *iter_out); *iter_out = scan_(parent_value_, *iter_out);
++iter_in;
++iter_out;
} }
} }
} else { } else {
internal::ChunkPartitioner<RAIIn> partitioner(first_, last_, 2); // recurse further
ScanFunctor functor_l(partitioner[0].GetFirst(), partitioner[0].GetLast(), size_t chunk_split_index = (chunk_first_ + chunk_last_) / 2;
// Split chunks into left / right branches:
ScanFunctor functor_l(
chunk_first_, chunk_split_index,
output_iterator_, neutral_, scan_, transformation_, output_iterator_, neutral_, scan_, transformation_,
policy_, block_size_, tree_values_, node_id_, policy_, partitioner_, tree_values_, node_id_,
is_first_pass_); is_first_pass_);
ScanFunctor functor_r(partitioner[1].GetFirst(), partitioner[1].GetLast(), ScanFunctor functor_r(
chunk_split_index + 1, chunk_last_,
output_iterator_, neutral_, scan_, transformation_, output_iterator_, neutral_, scan_, transformation_,
policy_, block_size_, tree_values_, node_id_, policy_, partitioner_, tree_values_, node_id_,
is_first_pass_); is_first_pass_);
functor_l.SetID(1); functor_l.SetID(LEFT);
functor_r.SetID(2); functor_r.SetID(RIGHT);
// Advance output iterator of right branch:
ChunkDescriptor<RAIIn> chunk_left = partitioner_[chunk_first_];
ChunkDescriptor<RAIIn> chunk_right = partitioner_[chunk_split_index + 1];
std::advance(functor_r.output_iterator_, std::advance(functor_r.output_iterator_,
std::distance(functor_l.first_, functor_r.first_)); std::distance(chunk_left.GetFirst(), chunk_right.GetFirst()));
if (!is_first_pass_) { if (!is_first_pass_) {
functor_l.parent_value_ = parent_value_; functor_l.parent_value_ = parent_value_;
functor_r.parent_value_ = functor_l.GetTreeValue() + parent_value_; functor_r.parent_value_ = functor_l.GetTreeValue() + parent_value_;
} }
// Spawn tasks to recurse:
mtapi::Node& node = mtapi::Node::GetInstance(); mtapi::Node& node = mtapi::Node::GetInstance();
mtapi::Task task_l = node.Spawn(mtapi::Action(base::MakeFunction( mtapi::Task task_l = node.Spawn(
functor_l, &ScanFunctor::Action), mtapi::Action(
base::MakeFunction(functor_l, &ScanFunctor::Action),
policy_)); policy_));
mtapi::Task task_r = node.Spawn(mtapi::Action(base::MakeFunction( mtapi::Task task_r = node.Spawn(
functor_r, &ScanFunctor::Action), mtapi::Action(
base::MakeFunction(functor_r, &ScanFunctor::Action),
policy_)); policy_));
// Wait for tasks to complete:
task_l.Wait(MTAPI_INFINITE); task_l.Wait(MTAPI_INFINITE);
task_r.Wait(MTAPI_INFINITE); task_r.Wait(MTAPI_INFINITE);
SetTreeValue(scan_(functor_l.GetTreeValue(), functor_r.GetTreeValue())); SetTreeValue(scan_(functor_l.GetTreeValue(), functor_r.GetTreeValue()));
...@@ -123,23 +129,25 @@ class ScanFunctor { ...@@ -123,23 +129,25 @@ class ScanFunctor {
} }
private: private:
static const int LEFT = 1;
static const int RIGHT = 2;
const embb::mtapi::ExecutionPolicy& policy_; const embb::mtapi::ExecutionPolicy& policy_;
RAIIn first_; size_t chunk_first_;
RAIIn last_; size_t chunk_last_;
RAIOut output_iterator_; RAIOut output_iterator_;
ScanFunction scan_; ScanFunction scan_;
TransformationFunction transformation_; TransformationFunction transformation_;
ReturnType neutral_; ReturnType neutral_;
size_t block_size_; const BlockSizePartitioner<RAIIn>& partitioner_;
ReturnType* tree_values_; ReturnType* tree_values_;
size_t node_id_; size_t node_id_;
ReturnType parent_value_; ReturnType parent_value_;
bool is_first_pass_; bool is_first_pass_;
void SetID(int is_left) { void SetID(int branch) {
if (is_left == 1) { if (branch == LEFT) {
node_id_ = 2 * node_id_ + 1; node_id_ = 2 * node_id_ + 1;
} else if (is_left == 2) { } else if (branch == RIGHT) {
node_id_ = 2 * node_id_ + 2; node_id_ = 2 * node_id_ + 2;
} }
} }
...@@ -165,37 +173,48 @@ void ScanIteratorCheck(RAIIn first, RAIIn last, RAIOut output_iterator, ...@@ -165,37 +173,48 @@ void ScanIteratorCheck(RAIIn first, RAIIn last, RAIOut output_iterator,
std::random_access_iterator_tag) { std::random_access_iterator_tag) {
typedef typename std::iterator_traits<RAIIn>::difference_type difference_type; typedef typename std::iterator_traits<RAIIn>::difference_type difference_type;
difference_type distance = std::distance(first, last); difference_type distance = std::distance(first, last);
if (distance <= 0) { if (distance == 0) {
return; return;
} else if (distance < 0) {
EMBB_THROW(embb::base::ErrorException, "Negative range for Scan");
} }
mtapi::Node& node = mtapi::Node::GetInstance(); unsigned int num_cores = policy.GetCoreCount();
if (num_cores == 0) {
EMBB_THROW(embb::base::ErrorException, "No cores in execution policy");
}
ReturnType values[MTAPI_NODE_MAX_TASKS_DEFAULT]; ReturnType values[MTAPI_NODE_MAX_TASKS_DEFAULT];
size_t used_block_size = block_size;
if (block_size == 0) { if (block_size == 0) {
used_block_size = static_cast<size_t>(distance) / node.GetCoreCount(); block_size = static_cast<size_t>(distance) / num_cores;
if (used_block_size == 0) used_block_size = 1; if (block_size == 0) {
block_size = 1;
}
} }
if (((distance / used_block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) { if (((distance / block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) {
EMBB_THROW(embb::base::ErrorException, EMBB_THROW(embb::base::ErrorException,
"Number of computation tasks required in scan " "Not enough MTAPI tasks available for parallel scan");
"exceeds MTAPI maximum number of tasks");
} }
// first pass. Calculates prefix sums for leaves and when recursion returns // first pass. Calculates prefix sums for leaves and when recursion returns
// it creates the tree. // it creates the tree.
typedef ScanFunctor<RAIIn, RAIOut, ReturnType, ScanFunction, typedef ScanFunctor<RAIIn, RAIOut, ReturnType, ScanFunction,
TransformationFunction> Functor; TransformationFunction> Functor;
Functor functor_down(first, last, output_iterator, neutral, scan, mtapi::Node& node = mtapi::Node::GetInstance();
transformation, policy, used_block_size, values, 0,
true); BlockSizePartitioner<RAIIn> partitioner_down(first, last, block_size);
Functor functor_down(0, partitioner_down.Size() - 1, output_iterator,
neutral, scan, transformation, policy, partitioner_down,
values, 0, true);
mtapi::Task task_down = node.Spawn(mtapi::Action(base::MakeFunction( mtapi::Task task_down = node.Spawn(mtapi::Action(base::MakeFunction(
functor_down, &Functor::Action), functor_down, &Functor::Action),
policy)); policy));
task_down.Wait(MTAPI_INFINITE); task_down.Wait(MTAPI_INFINITE);
// Second pass. Gives to each leaf the part of the prefix missing // Second pass. Gives to each leaf the part of the prefix missing
Functor functor_up(first, last, output_iterator, neutral, scan, BlockSizePartitioner<RAIIn> partitioner_up(first, last, block_size);
transformation, policy, used_block_size, values, 0, false); Functor functor_up(0, partitioner_up.Size() - 1, output_iterator,
neutral, scan, transformation, policy, partitioner_up,
values, 0, false);
mtapi::Task task_up = node.Spawn(mtapi::Action(base::MakeFunction( mtapi::Task task_up = node.Spawn(mtapi::Action(base::MakeFunction(
functor_up, &Functor::Action), functor_up, &Functor::Action),
policy)); policy));
......
...@@ -58,7 +58,7 @@ typedef embb::base::Function<void> InvokeFunctionType; ...@@ -58,7 +58,7 @@ typedef embb::base::Function<void> InvokeFunctionType;
template<typename Function1, ...> template<typename Function1, ...>
void Invoke( void Invoke(
Function1 func1, Function1 func1,
/**< [in] First function to invoke */ /**< [in] First function object to invoke */
...); ...);
/** /**
...@@ -72,7 +72,7 @@ void Invoke( ...@@ -72,7 +72,7 @@ void Invoke(
template<typename Function1, ...> template<typename Function1, ...>
void Invoke( void Invoke(
Function1 func1, Function1 func1,
/**< [in] Function to invoke */ /**< [in] Function object to invoke */
..., ...,
const embb::mtapi::ExecutionPolicy & policy const embb::mtapi::ExecutionPolicy & policy
/**< [in] embb::mtapi::ExecutionPolicy to use */ /**< [in] embb::mtapi::ExecutionPolicy to use */
......
...@@ -167,9 +167,20 @@ void MergeSortAllocate( ...@@ -167,9 +167,20 @@ void MergeSortAllocate(
typedef base::Allocation Alloc; typedef base::Allocation Alloc;
typename std::iterator_traits<RAI>::difference_type distance = last - first; typename std::iterator_traits<RAI>::difference_type distance = last - first;
typedef typename std::iterator_traits<RAI>::value_type value_type; typedef typename std::iterator_traits<RAI>::value_type value_type;
if (distance == 0) {
return;
} else if (distance < 0) {
EMBB_THROW(embb::base::ErrorException, "Negative range for MergeSort");
}
value_type* temporary = static_cast<value_type*>( value_type* temporary = static_cast<value_type*>(
Alloc::Allocate(distance * sizeof(value_type))); Alloc::Allocate(distance * sizeof(value_type)));
EMBB_TRY {
MergeSort(first, last, temporary, comparison, policy, block_size); MergeSort(first, last, temporary, comparison, policy, block_size);
} EMBB_CATCH (embb::base::ErrorException & e) {
// embb exception handling does not support catch(...) and rethrow yet.
Alloc::Free(temporary);
EMBB_THROW(embb::base::ErrorException, e.what());
}
Alloc::Free(temporary); Alloc::Free(temporary);
} }
......
...@@ -68,10 +68,10 @@ namespace algorithms { ...@@ -68,10 +68,10 @@ namespace algorithms {
* \tparam RAI Random access iterator * \tparam RAI Random access iterator
* \tparam ReturnType Type of result of reduction operation, deduced from * \tparam ReturnType Type of result of reduction operation, deduced from
* \c neutral * \c neutral
* \tparam ReductionFunction Binary reduction function with signature * \tparam ReductionFunction Binary reduction function object with signature
* <tt>ReturnType ReductionFunction(ReturnType, ReturnType)</tt>. * <tt>ReturnType ReductionFunction(ReturnType, ReturnType)</tt>.
* \tparam TransformationFunction Unary transformation function with signature * \tparam TransformationFunction Unary transformation function object with
* <tt>ReturnType TransformationFunction(typename * signature <tt>ReturnType TransformationFunction(typename
* std::iterator_traits<RAI>::value_type)</tt> * std::iterator_traits<RAI>::value_type)</tt>
*/ */
template<typename RAI, typename ReturnType, typename ReductionFunction, template<typename RAI, typename ReturnType, typename ReductionFunction,
......
...@@ -71,10 +71,10 @@ namespace algorithms { ...@@ -71,10 +71,10 @@ namespace algorithms {
* \tparam RAIOut Random access iterator type of output range * \tparam RAIOut Random access iterator type of output range
* \tparam ReturnType Type of output elements of scan operation, deduced from * \tparam ReturnType Type of output elements of scan operation, deduced from
* \c neutral * \c neutral
* \tparam ScanFunction Binary scan function with signature * \tparam ScanFunction Binary scan function object with signature
* <tt>ReturnType ScanFunction(ReturnType, ReturnType)</tt> * <tt>ReturnType ScanFunction(ReturnType, ReturnType)</tt>
* \tparam TransformationFunction Unary transformation function with signature * \tparam TransformationFunction Unary transformation function object with
* <tt>ReturnType TransformationFunction(typename * signature <tt>ReturnType TransformationFunction(typename
* std::iterator_traits<RAIIn>::value_type)</tt>. * std::iterator_traits<RAIIn>::value_type)</tt>.
*/ */
template<typename RAIIn, typename RAIOut, typename ReturnType, template<typename RAIIn, typename RAIOut, typename ReturnType,
......
...@@ -60,7 +60,7 @@ CountTest::CountTest() { ...@@ -60,7 +60,7 @@ CountTest::CountTest() {
void CountTest::TestDataStructures() { void CountTest::TestDataStructures() {
using embb::algorithms::Count; using embb::algorithms::Count;
const int size = 10; const int size = 10;
int array[] = {10, 20, 30, 30, 20, 10, 10, 20, 20, 20}; int array[] = { 10, 20, 30, 30, 20, 10, 10, 20, 20, 20 };
std::vector<int> vector(array, array + size); std::vector<int> vector(array, array + size);
std::deque<int> deque(array, array + size); std::deque<int> deque(array, array + size);
const std::vector<int> const_vector(array, array + size); const std::vector<int> const_vector(array, array + size);
...@@ -74,7 +74,7 @@ void CountTest::TestDataStructures() { ...@@ -74,7 +74,7 @@ void CountTest::TestDataStructures() {
void CountTest::TestCountIf() { void CountTest::TestCountIf() {
using embb::algorithms::CountIf; using embb::algorithms::CountIf;
const int size = 10; const int size = 10;
int array[] = {10, 21, 30, 31, 20, 11, 10, 21, 20, 20}; int array[] = { 10, 21, 30, 31, 20, 11, 10, 21, 20, 20 };
PT_EXPECT_EQ(CountIf(array, array + size, IsEven()), 6); PT_EXPECT_EQ(CountIf(array, array + size, IsEven()), 6);
PT_EXPECT_EQ(CountIf(array, array + size, &IsEvenFunction), 6); PT_EXPECT_EQ(CountIf(array, array + size, &IsEvenFunction), 6);
} }
...@@ -128,8 +128,6 @@ void CountTest::TestPolicy() { ...@@ -128,8 +128,6 @@ void CountTest::TestPolicy() {
PT_EXPECT_EQ(Count(vector.begin(), vector.end(), 10, ExecutionPolicy()), 3); PT_EXPECT_EQ(Count(vector.begin(), vector.end(), 10, ExecutionPolicy()), 3);
PT_EXPECT_EQ(Count(vector.begin(), vector.end(), 10, ExecutionPolicy(true)), PT_EXPECT_EQ(Count(vector.begin(), vector.end(), 10, ExecutionPolicy(true)),
3); 3);
PT_EXPECT_EQ(Count(vector.begin(), vector.end(), 10, ExecutionPolicy(false)),
3);
PT_EXPECT_EQ(Count(vector.begin(), vector.end(), 10, PT_EXPECT_EQ(Count(vector.begin(), vector.end(), 10,
ExecutionPolicy(true, 1)), 3); ExecutionPolicy(true, 1)), 3);
} }
......
...@@ -207,16 +207,35 @@ void ForEachTest::TestPolicy() { ...@@ -207,16 +207,35 @@ void ForEachTest::TestPolicy() {
} }
vector = init; vector = init;
ForEach(vector.begin(), vector.end(), Square(), ExecutionPolicy(false)); ForEach(vector.begin(), vector.end(), Square(), ExecutionPolicy(true, 1));
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < count; i++) {
PT_EXPECT_EQ(vector[i], init[i]*init[i]); PT_EXPECT_EQ(vector[i], init[i]*init[i]);
} }
vector = init; // ForEach on empty list should not throw:
ForEach(vector.begin(), vector.end(), Square(), ExecutionPolicy(true, 1)); ForEach(vector.begin(), vector.begin(), Square());
for (size_t i = 0; i < count; i++) {
PT_EXPECT_EQ(vector[i], init[i]*init[i]); #ifdef EMBB_USE_EXCEPTIONS
bool empty_core_set_thrown = false;
try {
ForEach(vector.begin(), vector.end(), Square(), ExecutionPolicy(false));
}
catch (embb::base::ErrorException &) {
empty_core_set_thrown = true;
}
PT_EXPECT_MSG(empty_core_set_thrown,
"Empty core set should throw ErrorException");
bool negative_range_thrown = false;
try {
std::vector<int>::iterator second = vector.begin() + 1;
ForEach(second, vector.begin(), Square());
}
catch (embb::base::ErrorException &) {
negative_range_thrown = true;
} }
PT_EXPECT_MSG(negative_range_thrown,
"Negative range should throw ErrorException");
#endif
} }
void ForEachTest::StressTest() { void ForEachTest::StressTest() {
......
...@@ -156,28 +156,28 @@ void MergeSortTest::TestRanges() { ...@@ -156,28 +156,28 @@ void MergeSortTest::TestRanges() {
} }
} }
//void MergeSortTest::TestBlockSizes() { void MergeSortTest::TestBlockSizes() {
// using embb::algorithms::MergeSortAllocate; using embb::algorithms::MergeSortAllocate;
// using embb::algorithms::ExecutionPolicy; using embb::mtapi::ExecutionPolicy;
// size_t count = 4; size_t count = 4;
// std::vector<int> init(count); std::vector<int> init(count);
// std::vector<int> vector(count); std::vector<int> vector(count);
// std::vector<int> vector_copy(count); std::vector<int> vector_copy(count);
// for (size_t i = count - 1; i > 0; i--) { for (size_t i = count - 1; i > 0; i--) {
// init[i] = static_cast<int>(i+2); init[i] = static_cast<int>(i+2);
// } }
// vector_copy = init; vector_copy = init;
// std::sort(vector_copy.begin(), vector_copy.end()); std::sort(vector_copy.begin(), vector_copy.end());
//
// for (size_t block_size = 1; block_size < count + 2; block_size++) { for (size_t block_size = 1; block_size < count + 2; block_size++) {
// vector = init; vector = init;
// MergeSortAllocate(vector.begin(), vector.end(), std::less<int>(), MergeSortAllocate(vector.begin(), vector.end(), std::less<int>(),
// ExecutionPolicy(), block_size); ExecutionPolicy(), block_size);
// for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < count; i++) {
// PT_EXPECT_EQ(vector[i], vector_copy[i]); PT_EXPECT_EQ(vector[i], vector_copy[i]);
// } }
// } }
//} }
void MergeSortTest::TestPolicy() { void MergeSortTest::TestPolicy() {
using embb::algorithms::MergeSortAllocate; using embb::algorithms::MergeSortAllocate;
...@@ -208,17 +208,36 @@ void MergeSortTest::TestPolicy() { ...@@ -208,17 +208,36 @@ void MergeSortTest::TestPolicy() {
vector = init; vector = init;
MergeSortAllocate(vector.begin(), vector.end(), std::less<int>(), MergeSortAllocate(vector.begin(), vector.end(), std::less<int>(),
ExecutionPolicy(false)); ExecutionPolicy(true, 1));
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < count; i++) {
PT_EXPECT_EQ(vector_copy[i], vector[i]); PT_EXPECT_EQ(vector_copy[i], vector[i]);
} }
vector = init; // MergeSort on empty list should not throw:
MergeSortAllocate(vector.begin(), vector.begin(), std::less<int>());
#ifdef EMBB_USE_EXCEPTIONS
bool empty_core_set_thrown = false;
try {
MergeSortAllocate(vector.begin(), vector.end(), std::less<int>(), MergeSortAllocate(vector.begin(), vector.end(), std::less<int>(),
ExecutionPolicy(true, 1)); ExecutionPolicy(false));
for (size_t i = 0; i < count; i++) { }
PT_EXPECT_EQ(vector_copy[i], vector[i]); catch (embb::base::ErrorException &) {
empty_core_set_thrown = true;
}
PT_EXPECT_MSG(empty_core_set_thrown,
"Empty core set should throw ErrorException");
bool negative_range_thrown = false;
try {
std::vector<int>::iterator second = vector.begin() + 1;
MergeSortAllocate(second, vector.begin(), std::less<int>());
}
catch (embb::base::ErrorException &) {
negative_range_thrown = true;
} }
PT_EXPECT_MSG(negative_range_thrown,
"Negative range should throw ErrorException");
#endif
} }
void MergeSortTest::StressTest() { void MergeSortTest::StressTest() {
......
...@@ -58,7 +58,7 @@ class MergeSortTest : public partest::TestCase { ...@@ -58,7 +58,7 @@ class MergeSortTest : public partest::TestCase {
/** /**
* Tests various block sizes for the workers. * Tests various block sizes for the workers.
*/ */
//void TestBlockSizes(); void TestBlockSizes();
/** /**
* Tests setting policies (without checking their actual execution). * Tests setting policies (without checking their actual execution).
......
...@@ -214,17 +214,36 @@ void QuickSortTest::TestPolicy() { ...@@ -214,17 +214,36 @@ void QuickSortTest::TestPolicy() {
vector = init; vector = init;
QuickSort(vector.begin(), vector.end(), std::greater<int>(), QuickSort(vector.begin(), vector.end(), std::greater<int>(),
ExecutionPolicy(false)); ExecutionPolicy(true, 1));
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < count; i++) {
PT_EXPECT_EQ(vector_copy[i], vector[i]); PT_EXPECT_EQ(vector_copy[i], vector[i]);
} }
vector = init; // MergeSort on empty list should not throw:
QuickSort(vector.begin(), vector.end(), std::greater<int>(), QuickSort(vector.begin(), vector.begin(), std::less<int>());
ExecutionPolicy(true, 1));
for (size_t i = 0; i < count; i++) { #ifdef EMBB_USE_EXCEPTIONS
PT_EXPECT_EQ(vector_copy[i], vector[i]); bool empty_core_set_thrown = false;
try {
QuickSort(vector.begin(), vector.end(), std::less<int>(),
ExecutionPolicy(false));
}
catch (embb::base::ErrorException &) {
empty_core_set_thrown = true;
}
PT_EXPECT_MSG(empty_core_set_thrown,
"Empty core set should throw ErrorException");
bool negative_range_thrown = false;
try {
std::vector<int>::iterator second = vector.begin() + 1;
QuickSort(second, vector.begin(), std::less<int>());
}
catch (embb::base::ErrorException &) {
negative_range_thrown = true;
} }
PT_EXPECT_MSG(negative_range_thrown,
"Negative range should throw ErrorException");
#endif
} }
void QuickSortTest::StressTest() { void QuickSortTest::StressTest() {
......
...@@ -179,10 +179,33 @@ void ReduceTest::TestPolicy() { ...@@ -179,10 +179,33 @@ void ReduceTest::TestPolicy() {
Identity(), ExecutionPolicy()), sum); Identity(), ExecutionPolicy()), sum);
PT_EXPECT_EQ(Reduce(vector.begin(), vector.end(), 0, std::plus<int>(), PT_EXPECT_EQ(Reduce(vector.begin(), vector.end(), 0, std::plus<int>(),
Identity(), ExecutionPolicy(true)), sum); Identity(), ExecutionPolicy(true)), sum);
PT_EXPECT_EQ(Reduce(vector.begin(), vector.end(), 0,
std::plus<int>(), Identity(), ExecutionPolicy(false)), sum);
PT_EXPECT_EQ(Reduce(vector.begin(), vector.end(), 0, std::plus<int>(), PT_EXPECT_EQ(Reduce(vector.begin(), vector.end(), 0, std::plus<int>(),
Identity(), ExecutionPolicy(true, 1)), sum); Identity(), ExecutionPolicy(true, 1)), sum);
// Empty list should return neutral element:
PT_EXPECT_EQ(Reduce(vector.begin(), vector.begin(), 41, std::plus<int>(),
Identity(), ExecutionPolicy(true, 1)), 41);
#ifdef EMBB_USE_EXCEPTIONS
bool empty_core_set_thrown = false;
try {
Reduce(vector.begin(), vector.end(), 0,
std::plus<int>(), Identity(),
ExecutionPolicy(false));
} catch (embb::base::ErrorException &) {
empty_core_set_thrown = true;
}
PT_EXPECT_MSG(empty_core_set_thrown,
"Empty core set should throw ErrorException");
bool negative_range_thrown = false;
try {
std::vector<int>::iterator second = vector.begin() + 1;
Reduce(second, vector.begin(), 0, std::plus<int>());
}
catch (embb::base::ErrorException &) {
negative_range_thrown = true;
}
PT_EXPECT_MSG(negative_range_thrown,
"Negative range should throw ErrorException");
#endif
} }
void ReduceTest::StressTest() { void ReduceTest::StressTest() {
......
...@@ -284,21 +284,41 @@ void ScanTest::TestPolicy() { ...@@ -284,21 +284,41 @@ void ScanTest::TestPolicy() {
outputVector = init; outputVector = init;
Scan(vector.begin(), vector.end(), outputVector.begin(), 0, std::plus<int>(), Scan(vector.begin(), vector.end(), outputVector.begin(), 0, std::plus<int>(),
Identity(), ExecutionPolicy(false)); Identity(), ExecutionPolicy(true, 1));
expected = 0; expected = 0;
for (size_t i = 0; i < count; i++) { for (size_t i = 0; i < count; i++) {
expected += vector[i]; expected += vector[i];
PT_EXPECT_EQ(expected, outputVector[i]); PT_EXPECT_EQ(expected, outputVector[i]);
} }
// Empty list should not throw and not change output:
outputVector = init; outputVector = init;
Scan(vector.begin(), vector.end(), outputVector.begin(), 0, std::plus<int>(), std::vector<int>::iterator out_it = outputVector.begin();
Identity(), ExecutionPolicy(true, 1)); Scan(vector.begin(), vector.begin(), out_it, 0, std::plus<int>());
expected = 0; PT_EXPECT(out_it == outputVector.begin());
for (size_t i = 0; i < count; i++) {
expected += vector[i]; #ifdef EMBB_USE_EXCEPTIONS
PT_EXPECT_EQ(expected, outputVector[i]); bool empty_core_set_thrown = false;
try {
Scan(vector.begin(), vector.end(), outputVector.begin(),
0, std::plus<int>(), Identity(),
ExecutionPolicy(false));
}
catch (embb::base::ErrorException &) {
empty_core_set_thrown = true;
}
PT_EXPECT_MSG(empty_core_set_thrown,
"Empty core set should throw ErrorException");
bool negative_range_thrown = false;
try {
std::vector<int>::iterator second = vector.begin() + 1;
Scan(second, vector.begin(), outputVector.begin(), 0, std::plus<int>());
}
catch (embb::base::ErrorException &) {
negative_range_thrown = true;
} }
PT_EXPECT_MSG(negative_range_thrown,
"Negative range should throw ErrorException");
#endif
} }
void ScanTest::StressTest() { void ScanTest::StressTest() {
......
...@@ -175,16 +175,6 @@ class Exception : public std::exception { ...@@ -175,16 +175,6 @@ class Exception : public std::exception {
} }
/** /**
* Returns the error message.
* This is here for compatibility with std::exception.
*
* \return Pointer to error message
*/
virtual const char* what() const throw() {
return What();
}
/**
* Returns an integer code representing the exception. * Returns an integer code representing the exception.
* *
* \return %Exception code * \return %Exception code
......
...@@ -36,8 +36,8 @@ namespace internal { ...@@ -36,8 +36,8 @@ namespace internal {
/** /**
* Thread closure for thread start function with no arguments. * Thread closure for thread start function with no arguments.
* *
* Provides a thread start function calling a callable entity such as a function * Provides a thread start function from which a priorly stored function object
* pointer or functor. * is called.
*/ */
template<typename Function> template<typename Function>
struct ThreadClosure { struct ThreadClosure {
...@@ -56,8 +56,8 @@ struct ThreadClosure { ...@@ -56,8 +56,8 @@ struct ThreadClosure {
/** /**
* Thread closure for thread start function with one argument. * Thread closure for thread start function with one argument.
* *
* Provides a thread start function calling a callable entity such as a function * Provides a thread start function from which a priorly stored function object
* pointer or functor. * is called.
*/ */
template<typename Function, typename Arg1> template<typename Function, typename Arg1>
struct ThreadClosureArg1 { struct ThreadClosureArg1 {
...@@ -78,8 +78,8 @@ struct ThreadClosureArg1 { ...@@ -78,8 +78,8 @@ struct ThreadClosureArg1 {
/** /**
* Thread closure for thread start function with two arguments. * Thread closure for thread start function with two arguments.
* *
* Provides a thread start function calling a callable entity such as a function * Provides a thread start function from which a priorly stored function object
* pointer or functor. * is called.
*/ */
template<typename Function, typename Arg1, typename Arg2> template<typename Function, typename Arg1, typename Arg2>
struct ThreadClosureArg2 { struct ThreadClosureArg2 {
......
...@@ -154,12 +154,12 @@ class Thread { ...@@ -154,12 +154,12 @@ class Thread {
* \memory A small constant amount of memory to store the function. This * \memory A small constant amount of memory to store the function. This
* memory is freed the thread is joined. * memory is freed the thread is joined.
* \notthreadsafe * \notthreadsafe
* \tparam Function Type of callable * \tparam Function Function object type
*/ */
template<typename Function> template<typename Function>
explicit Thread( explicit Thread(
Function function Function function
/**< [IN] Callable (without arguments, must be copyable) */ /**< [IN] Copyable function object, callable without arguments */
); );
/** /**
...@@ -174,14 +174,14 @@ class Thread { ...@@ -174,14 +174,14 @@ class Thread {
* \memory A small constant amount of memory to store the function. This * \memory A small constant amount of memory to store the function. This
* memory is freed the thread is joined. * memory is freed the thread is joined.
* \notthreadsafe * \notthreadsafe
* \tparam Function Type of callable * \tparam Function Function object type
*/ */
template<typename Function> template<typename Function>
explicit Thread( explicit Thread(
CoreSet& core_set, CoreSet& core_set,
/**< [IN] Set of cores on which the thread shall be executed. */ /**< [IN] Set of cores on which the thread shall be executed. */
Function function Function function
/**< [IN] Callable (without arguments, must be copyable) */ /**< [IN] Copyable function object, callable without arguments */
); );
/** /**
...@@ -196,13 +196,13 @@ class Thread { ...@@ -196,13 +196,13 @@ class Thread {
* \memory A small constant amount of memory to store the function. This * \memory A small constant amount of memory to store the function. This
* memory is freed the thread is joined. * memory is freed the thread is joined.
* \notthreadsafe * \notthreadsafe
* \tparam Function Type of callable * \tparam Function Function object type
* \tparam Argument Type of argument * \tparam Argument Type of argument
*/ */
template<typename Function, typename Arg> template<typename Function, typename Arg>
Thread( Thread(
Function function, Function function,
/**< [IN] Callable (with one argument, must be copyable) */ /**< [IN] Copyable function object, callable with one argument */
Arg arg Arg arg
/**< [IN] Argument for function (must be copyable) */ /**< [IN] Argument for function (must be copyable) */
); );
...@@ -219,14 +219,14 @@ class Thread { ...@@ -219,14 +219,14 @@ class Thread {
* \memory A small constant amount of memory to store the function. This * \memory A small constant amount of memory to store the function. This
* memory is freed the thread is joined. * memory is freed the thread is joined.
* \notthreadsafe * \notthreadsafe
* \tparam Function Type of callable * \tparam Function Function object type
* \tparam Arg1 Type of first argument * \tparam Arg1 Type of first argument
* \tparam Arg2 Type of second argument * \tparam Arg2 Type of second argument
*/ */
template<typename Function, typename Arg1, typename Arg2> template<typename Function, typename Arg1, typename Arg2>
Thread( Thread(
Function function, Function function,
/**< [IN] Callable (with two arguments, must be copyable) */ /**< [IN] Copyable function object, callable with two arguments */
Arg1 arg1, Arg1 arg1,
/**< [IN] First argument for function (must be copyable) */ /**< [IN] First argument for function (must be copyable) */
Arg2 arg2 Arg2 arg2
......
...@@ -35,12 +35,10 @@ namespace embb { ...@@ -35,12 +35,10 @@ namespace embb {
namespace base { namespace base {
namespace test { namespace test {
/** /**
* Forward declaration for friending. * Forward declaration for friending.
*/ */
class ThreadSpecificStorageTest; class ThreadSpecificStorageTest;
} }
/** /**
......
...@@ -43,8 +43,7 @@ class ThreadTest : public partest::TestCase { ...@@ -43,8 +43,7 @@ class ThreadTest : public partest::TestCase {
/** /**
* Adds test methods. * Adds test methods.
*/ */
ThreadTest(); /**< ThreadTest();
number of threads concurrently running test methods */
private: private:
/** /**
......
...@@ -89,7 +89,7 @@ class Inputs<Slices, T1, embb::base::internal::Nil, embb::base::internal::Nil, ...@@ -89,7 +89,7 @@ class Inputs<Slices, T1, embb::base::internal::Nil, embb::base::internal::Nil,
const int idx = clock % Slices; const int idx = clock % Slices;
if (count_[idx] == 0) { if (count_[idx] == 0) {
EMBB_THROW(embb::base::ErrorException, EMBB_THROW(embb::base::ErrorException,
"All inputs already fired for this clock.") "All inputs already fired for this clock.");
} }
if (--count_[idx] == 0) { if (--count_[idx] == 0) {
count_[idx] = 1; count_[idx] = 1;
...@@ -135,7 +135,7 @@ class Inputs<Slices, T1, T2, embb::base::internal::Nil, ...@@ -135,7 +135,7 @@ class Inputs<Slices, T1, T2, embb::base::internal::Nil,
const int idx = clock % Slices; const int idx = clock % Slices;
if (count_[idx] == 0) { if (count_[idx] == 0) {
EMBB_THROW(embb::base::ErrorException, EMBB_THROW(embb::base::ErrorException,
"All inputs already fired for this clock.") "All inputs already fired for this clock.");
} }
if (--count_[idx] == 0) { if (--count_[idx] == 0) {
count_[idx] = 2; count_[idx] = 2;
...@@ -185,7 +185,7 @@ class Inputs<Slices, T1, T2, T3, embb::base::internal::Nil, ...@@ -185,7 +185,7 @@ class Inputs<Slices, T1, T2, T3, embb::base::internal::Nil,
const int idx = clock % Slices; const int idx = clock % Slices;
if (count_[idx] == 0) { if (count_[idx] == 0) {
EMBB_THROW(embb::base::ErrorException, EMBB_THROW(embb::base::ErrorException,
"All inputs already fired for this clock.") "All inputs already fired for this clock.");
} }
if (--count_[idx] == 0) { if (--count_[idx] == 0) {
count_[idx] = 3; count_[idx] = 3;
...@@ -238,7 +238,7 @@ class Inputs<Slices, T1, T2, T3, T4, embb::base::internal::Nil> ...@@ -238,7 +238,7 @@ class Inputs<Slices, T1, T2, T3, T4, embb::base::internal::Nil>
const int idx = clock % Slices; const int idx = clock % Slices;
if (count_[idx] == 0) { if (count_[idx] == 0) {
EMBB_THROW(embb::base::ErrorException, EMBB_THROW(embb::base::ErrorException,
"All inputs already fired for this clock.") "All inputs already fired for this clock.");
} }
if (--count_[idx] == 0) { if (--count_[idx] == 0) {
count_[idx] = 4; count_[idx] = 4;
...@@ -296,7 +296,7 @@ class Inputs ...@@ -296,7 +296,7 @@ class Inputs
const int idx = clock % Slices; const int idx = clock % Slices;
if (count_[idx] == 0) { if (count_[idx] == 0) {
EMBB_THROW(embb::base::ErrorException, EMBB_THROW(embb::base::ErrorException,
"All inputs already fired for this clock.") "All inputs already fired for this clock.");
} }
if (--count_[idx] == 0) { if (--count_[idx] == 0) {
count_[idx] = 5; count_[idx] = 5;
......
...@@ -68,7 +68,7 @@ ...@@ -68,7 +68,7 @@
* </tr> * </tr>
* <tr> * <tr>
* <td>Action Function</td> * <td>Action Function</td>
* <td>The callable, an executable function of an action, invoked by the * <td>The executable function of an action, invoked by the
* MTAPI runtime when a task is started.</td> * MTAPI runtime when a task is started.</td>
* </tr> * </tr>
* <tr> * <tr>
......
...@@ -51,13 +51,13 @@ class Action { ...@@ -51,13 +51,13 @@ class Action {
} }
/** /**
* Constructs an Action from any entity that provides an * Constructs an Action from a function object.
* operator() (TaskContext &). *
* \tparam Function Function object
*/ */
template <typename Function> template <typename Function>
Action( Action(
Function func /**< [in] Anything that provides an Function func /**< [in] Function object */
operator() (TaskContext &). */
) )
: function_(func) : function_(func)
, execution_policy_() { , execution_policy_() {
...@@ -65,13 +65,13 @@ class Action { ...@@ -65,13 +65,13 @@ class Action {
} }
/** /**
* Constructs an Action from any entity that provides an * Constructs an Action from a function object and an Affinity.
* operator() (TaskContext &) and an Affinity. *
* \tparam Function Function object
*/ */
template <typename Function> template <typename Function>
Action( Action(
Function func, /**< [in] Anything that provides an Function func, /**< [in] Function object */
operator() (TaskContext &). */
ExecutionPolicy execution_policy /**< [in] Execution policy */ ExecutionPolicy execution_policy /**< [in] Execution policy */
) )
: function_(func) : function_(func)
......
...@@ -106,6 +106,13 @@ class ExecutionPolicy{ ...@@ -106,6 +106,13 @@ class ExecutionPolicy{
); );
/** /**
* Returns the number of cores the policy is affine to.
*
* \return the number of cores
*/
unsigned int GetCoreCount() const;
/**
* Returns the affinity * Returns the affinity
* *
* \return the affinity * \return the affinity
......
...@@ -129,6 +129,15 @@ class Node { ...@@ -129,6 +129,15 @@ class Node {
} }
/** /**
* Returns the number of worker threads.
* \return The number of worker threads.
* \waitfree
*/
mtapi_uint_t GetWorkerThreadCount() const {
return worker_thread_count_;
}
/**
* Creates a Group to launch \link Task Tasks \endlink in. * Creates a Group to launch \link Task Tasks \endlink in.
* \return A reference to the created Group * \return A reference to the created Group
* \throws ErrorException if the Group object could not be constructed. * \throws ErrorException if the Group object could not be constructed.
...@@ -210,6 +219,7 @@ class Node { ...@@ -210,6 +219,7 @@ class Node {
mtapi_task_context_t * context); mtapi_task_context_t * context);
mtapi_uint_t core_count_; mtapi_uint_t core_count_;
mtapi_uint_t worker_thread_count_;
mtapi_action_hndl_t action_handle_; mtapi_action_hndl_t action_handle_;
std::list<Queue*> queues_; std::list<Queue*> queues_;
std::list<Group*> groups_; std::list<Group*> groups_;
......
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include <embb/mtapi/execution_policy.h> #include <embb/mtapi/execution_policy.h>
#include <embb/mtapi/mtapi.h> #include <embb/mtapi/mtapi.h>
#include <embb/base/exceptions.h> #include <embb/base/exceptions.h>
#include <embb/base/c/internal/bitset.h>
#include <cassert> #include <cassert>
namespace embb { namespace embb {
...@@ -105,6 +106,10 @@ bool ExecutionPolicy::IsSetWorker(mtapi_uint_t worker) { ...@@ -105,6 +106,10 @@ bool ExecutionPolicy::IsSetWorker(mtapi_uint_t worker) {
return MTAPI_TRUE == aff; return MTAPI_TRUE == aff;
} }
unsigned int ExecutionPolicy::GetCoreCount() const {
return embb_bitset_count(&affinity_);
}
const mtapi_affinity_t &ExecutionPolicy::GetAffinity() const { const mtapi_affinity_t &ExecutionPolicy::GetAffinity() const {
return affinity_; return affinity_;
} }
......
...@@ -75,6 +75,7 @@ Node::Node( ...@@ -75,6 +75,7 @@ Node::Node(
"mtapi::Node could not initialize mtapi"); "mtapi::Node could not initialize mtapi");
} }
core_count_ = info.hardware_concurrency; core_count_ = info.hardware_concurrency;
worker_thread_count_ = embb_core_set_count(&attr->core_affinity);
action_handle_ = mtapi_action_create(MTAPI_CPP_TASK_JOB, action_func, action_handle_ = mtapi_action_create(MTAPI_CPP_TASK_JOB, action_func,
MTAPI_NULL, 0, MTAPI_NULL, &status); MTAPI_NULL, 0, MTAPI_NULL, &status);
if (MTAPI_SUCCESS != status) { if (MTAPI_SUCCESS != status) {
......
No preview for this file type
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or sign in to comment