reduce-inl.h 6.81 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Copyright (c) 2014, Siemens AG. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef EMBB_ALGORITHMS_INTERNAL_REDUCE_INL_H_
#define EMBB_ALGORITHMS_INTERNAL_REDUCE_INL_H_

#include <embb/mtapi/mtapi.h>
#include <embb/algorithms/internal/partition.h>

#include <functional>
#include <embb/base/exceptions.h>
#include <cassert>

namespace embb {
namespace algorithms {
namespace internal {

template<typename RAI, typename ReturnType, typename ReductionFunction,
         typename TransformationFunction>
class ReduceFunctor {
 public:
  ReduceFunctor(RAI first, RAI last, ReturnType neutral,
                ReductionFunction reduction,
                TransformationFunction transformation,
                const ExecutionPolicy &policy, size_t block_size,
                ReturnType& result)
  :
      first_(first), last_(last), neutral_(neutral), reduction_(reduction),
      transformation_(transformation), policy_(policy),
      block_size_(block_size), result_(result) {
  }

  void Action(mtapi::TaskContext&) {
    if (first_ == last_) {
      return;
    }
    size_t distance = static_cast<size_t>(std::distance(first_, last_));
    if (distance <= block_size_) {  // leaf case -> do work
      ReturnType result(neutral_);
      for (RAI iter = first_; iter != last_; ++iter) {
        result = reduction_(result, transformation_(*iter));
      }
      result_ = result;
    } else {  // recurse further
      internal::ChunkPartitioner<RAI> partitioner(first_, last_, 2);
      ReturnType result_l(neutral_);
      ReturnType result_r(neutral_);
      ReduceFunctor functor_l(partitioner[0].GetFirst(),
                              partitioner[0].GetLast(),
                              neutral_, reduction_, transformation_, policy_,
                              block_size_, result_l);
      ReduceFunctor functor_r(partitioner[1].GetFirst(),
                              partitioner[1].GetLast(),
                              neutral_, reduction_, transformation_, policy_,
                              block_size_, result_r);
      mtapi::Node& node = mtapi::Node::GetInstance();
      mtapi::Task task_l = node.Spawn(mtapi::Action(base::MakeFunction(
          functor_l, &ReduceFunctor::Action), policy_.GetAffinity()),
          policy_.GetPriority());
      mtapi::Task task_r = node.Spawn(mtapi::Action(base::MakeFunction(
          functor_r, &ReduceFunctor::Action), policy_.GetAffinity()),
          policy_.GetPriority());
      task_l.Wait(MTAPI_INFINITE);
      task_r.Wait(MTAPI_INFINITE);
      result_ = reduction_(result_l, result_r);
    }
  }

 private:
  RAI first_;
  RAI last_;
  ReturnType neutral_;
  ReductionFunction reduction_;
  TransformationFunction transformation_;
  const ExecutionPolicy& policy_;
  size_t block_size_;
  ReturnType& result_;

  ReduceFunctor& operator=(const ReduceFunctor&);
  ReduceFunctor(const ReduceFunctor&);
};

template<typename RAI, typename ReturnType, typename ReductionFunction,
         typename TransformationFunction>
ReturnType ReduceRecurcive(RAI first, RAI last, ReturnType neutral,
                           ReductionFunction reduction,
                           TransformationFunction transformation,
                           const ExecutionPolicy& policy, size_t block_size) {
  typedef typename std::iterator_traits<RAI>::difference_type difference_type;
  difference_type distance = std::distance(first, last);
  assert(distance > 0);

  mtapi::Node& node = mtapi::Node::GetInstance();
  size_t used_block_size = block_size;
  if (used_block_size == 0) {
      used_block_size = static_cast<size_t>(distance) / node.GetCoreCount();
      if (used_block_size == 0) used_block_size = 1;
  }

  if (((distance / used_block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) {
    EMBB_THROW(embb::base::ErrorException,
               "Number of computation tasks required in reduction would "
               "exceed MTAPI maximum number of tasks");
  }

  ReturnType result = neutral;
  typedef ReduceFunctor<RAI, ReturnType, ReductionFunction,
                        TransformationFunction> Functor;
  Functor functor(first, last, neutral, reduction, transformation, policy,
                  used_block_size, result);
  mtapi::Task task = node.Spawn(mtapi::Action(base::MakeFunction(
      functor, &Functor::Action), policy.GetAffinity()), policy.GetPriority());
  task.Wait(MTAPI_INFINITE);
  return result;
}

template<typename RAI, typename TransformationFunction,
  typename ReductionFunction, typename ReturnType>
ReturnType ReduceIteratorCheck(RAI first, RAI last, ReductionFunction reduction,
                               TransformationFunction transformation,
                               ReturnType neutral,
                               const ExecutionPolicy& policy, size_t block_size,
                               std::random_access_iterator_tag) {
    return ReduceRecurcive(first, last, neutral, reduction, transformation,
                           policy, block_size);
}

}  // namespace internal

template<typename RAI, typename ReturnType, typename ReductionFunction,
         typename TransformationFunction >
ReturnType Reduce(RAI first, RAI last, ReturnType neutral,
                  ReductionFunction reduction,
                  TransformationFunction transformation,
                  const ExecutionPolicy& policy, size_t block_size) {
  typename std::iterator_traits<RAI>::iterator_category category;
  return internal::ReduceIteratorCheck(first, last, reduction, transformation,
                                       neutral, policy, block_size, category);
}

}  // namespace algorithms
}  // namespace embb

#endif  // EMBB_ALGORITHMS_INTERNAL_REDUCE_INL_H_