quick_sort-inl.h 7.69 KB
Newer Older
1
/*
Marcus Winter committed
2
 * Copyright (c) 2014-2016, Siemens AG. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef EMBB_ALGORITHMS_INTERNAL_QUICK_SORT_INL_H_
#define EMBB_ALGORITHMS_INTERNAL_QUICK_SORT_INL_H_

#include <cassert>
#include <iterator>
#include <functional>
Marcus Winter committed
33 34
#include <utility>   // swap C++ 11
#include <algorithm> // swap C++ 98
35 36

#include <embb/base/exceptions.h>
37
#include <embb/mtapi/mtapi.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include <embb/algorithms/internal/partition.h>

namespace embb {
namespace algorithms {

namespace internal {

template <typename RAI, typename ComparisonFunction>
class QuickSortFunctor {
 public:
  /**
   * Constructs a functor.
   */
  QuickSortFunctor(RAI first, RAI last, ComparisonFunction comparison,
52
    const embb::mtapi::ExecutionPolicy& policy, size_t block_size)
53 54 55 56 57 58 59
    : first_(first), last_(last), comparison_(comparison), policy_(policy),
      block_size_(block_size) {
  }

  /**
   * MTAPI action function and starting point of the parallel quick sort.
   */
60
  void Action(embb::mtapi::TaskContext&) {
61 62 63 64 65 66 67 68 69 70 71
    Difference distance = last_ - first_;
    if (distance <= 1) {
      return;
    } else {
      Difference pivot = MedianOfNine(first_, last_);
      RAI mid = first_ + pivot;
      mid = SerialPartition(first_, last_, mid);
      if (distance <= static_cast<Difference>(block_size_)) {
        SerialQuickSort(first_, mid);
        SerialQuickSort(mid, last_);
      } else {
72
        embb::mtapi::Node& node = embb::mtapi::Node::GetInstance();
73 74
        QuickSortFunctor functor_l(first_, mid, comparison_, policy_,
                                   block_size_);
75 76 77
        embb::mtapi::Task task_l = node.Start(
          base::MakeFunction(functor_l, &QuickSortFunctor::Action),
          policy_);
78 79
        QuickSortFunctor functor_r(mid, last_, comparison_, policy_,
                                   block_size_);
80 81 82
        embb::mtapi::Task task_r = node.Start(
          base::MakeFunction(functor_r, &QuickSortFunctor::Action),
          policy_);
83 84 85 86 87 88 89 90 91 92
        task_l.Wait(MTAPI_INFINITE);
        task_r.Wait(MTAPI_INFINITE);
      }
    }
  }

 private:
  RAI first_;
  RAI last_;
  ComparisonFunction comparison_;
93
  const embb::mtapi::ExecutionPolicy& policy_;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  size_t block_size_;

  typedef typename std::iterator_traits<RAI>::difference_type Difference;

  /**
   * Computes the pseudo-median of nine by using MedianOfThree().
   */
  Difference MedianOfNine(RAI first, RAI last) {
    Difference distance = last - first;
    Difference offset = distance / static_cast<Difference>(8);
    if (offset == 0) {
      return distance / 2;
    }
    Difference pseudo_median_of_nine = MedianOfThree(
        first,
        MedianOfThree(first, static_cast<Difference>(0), offset, offset * 2),
        MedianOfThree(first, offset * 3, offset * 4, offset * 5),
        MedianOfThree(first, offset * 6, offset * 7, distance - 1));
    return pseudo_median_of_nine;
  }

  /**
   * Computes the median of three.
   */
  Difference MedianOfThree(RAI first, Difference left, Difference mid,
                           Difference right) {
    if (comparison_(*(first + left), *(first + mid))) {
      if (comparison_(*(first + mid), *(first + right))) {
        return mid;
      } else {
        if (comparison_(*(first + left), *(first + right)))
          return right;
        else
          return left;
      }
    } else {
      if (comparison_(*(first + right), *(first + mid))) {
        return mid;
      } else {
        if (comparison_(*(first + right), *(first + left)))
          return right;
        else
          return left;
      }
    }
  }

  /**
   * Performs a quick sort partitioning as serial computation.
   */
  RAI SerialPartition(RAI first, RAI last, RAI pivot) {
    while (first != last) {
      while (comparison_(*first, *pivot)) {
        ++first;
        if (first == last)
          return first;
      }
      do {
        --last;
        if (first == last) return first;
      } while (comparison_(*pivot, *last));
      std::swap(*first, *last);
      if(pivot == first) {
        pivot = last;
      } else if (pivot == last) {
        pivot = first;
      }
      ++first;
    }
    return first;
  }

  /**
   * Performs the quick sort algorithm as serial computation.
   */
  void SerialQuickSort(RAI first, RAI last) {
    if (last - first <= 1) {
      return;
    } else {
      Difference pivot = MedianOfNine(first, last);
      RAI mid = first + pivot;
      mid = SerialPartition(first, last, mid);
      SerialQuickSort(first, mid);
      SerialQuickSort(mid, last);
    }
  }

  /**
   * Disables assignment.
   */
  QuickSortFunctor& operator=(const QuickSortFunctor&);

  /**
   * Disables Copying.
   */
  QuickSortFunctor(const QuickSortFunctor&);
};

template <typename RAI, typename ComparisonFunction>
193 194
void QuickSortIteratorCheck(RAI first, RAI last,
  ComparisonFunction comparison,
195
  const embb::mtapi::ExecutionPolicy& policy,
196 197
  size_t block_size,
  std::random_access_iterator_tag) {
198
  embb::mtapi::Node& node = embb::mtapi::Node::GetInstance();
199 200
  typedef typename std::iterator_traits<RAI>::difference_type difference_type;
  difference_type distance = std::distance(first, last);
201
  if (distance == 0) {
202
    return;
203 204
  } else if (distance < 0) {
    EMBB_THROW(embb::base::ErrorException, "Negative range for QuickSort");
205 206 207 208 209
  }
  unsigned int num_cores = policy.GetCoreCount();
  if (num_cores == 0) {
    EMBB_THROW(embb::base::ErrorException, "No cores in execution policy");
  }
210
  if (block_size == 0) {
211
    block_size = (static_cast<size_t>(distance) / num_cores);
212 213 214 215 216 217 218
    if (block_size == 0)
      block_size = 1;
  }
  if (((distance / block_size) * 2) + 1 > MTAPI_NODE_MAX_TASKS_DEFAULT) {
    EMBB_THROW(embb::base::ErrorException,
               "Not enough MTAPI tasks available for performing quick sort");
  }
219
  QuickSortFunctor<RAI, ComparisonFunction> functor(
220
      first, last, comparison, policy, block_size);
221 222 223 224
  embb::mtapi::Task task = node.Start(
    embb::base::MakeFunction(functor,
      &QuickSortFunctor<RAI, ComparisonFunction>::Action),
    policy);
225 226 227
  task.Wait(MTAPI_INFINITE);
}

228 229 230 231
}  // namespace internal

template <typename RAI, typename ComparisonFunction>
void QuickSort(RAI first, RAI last, ComparisonFunction comparison,
232
  const embb::mtapi::ExecutionPolicy& policy, size_t block_size) {
233
  typedef typename std::iterator_traits<RAI>::iterator_category category;
234
  internal::QuickSortIteratorCheck(first, last, comparison,
235 236 237
                                   policy, block_size, category());
}

238 239 240 241
}  // namespace algorithms
}  // namespace embb

#endif  // EMBB_ALGORITHMS_INTERNAL_QUICK_SORT_INL_H_