hazard_pointer_test.cc 16.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2014-2015, Siemens AG. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "./hazard_pointer_test.h"

29 30
#include <embb/base/internal/config.h>

31 32 33
namespace embb {
namespace containers {
namespace test {
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
IntObjectTestPool::IntObjectTestPool(unsigned int pool_size) :
poolSize(pool_size) {
  simplePoolObjects = static_cast<int*>(
    embb::base::Allocation::Allocate(sizeof(int)*pool_size));

  simplePool = static_cast<embb::base::Atomic<int>*> (
    embb::base::Allocation::Allocate(sizeof(embb::base::Atomic<int>)*
    pool_size));

  for (unsigned int i = 0; i != pool_size; ++i) {
    // in-place new for each array cell
    new (&simplePool[i]) embb::base::Atomic<int>;
  }

  for (unsigned int i = 0; i != pool_size; ++i) {
    simplePool[i] = FREE_MARKER;
    simplePoolObjects[i] = 0;
  }
}

IntObjectTestPool::~IntObjectTestPool() {
  embb::base::Allocation::Free(simplePoolObjects);

  for (unsigned int i = 0; i != poolSize; ++i) {
    // in-place new for each array cell
    simplePool[i].~Atomic();
  }

  embb::base::Allocation::Free(simplePool);
}

int* IntObjectTestPool::Allocate() {
  for (unsigned int i = 0; i != poolSize; ++i) {
    int expected = FREE_MARKER;
    if (simplePool[i].CompareAndSwap
      (expected, ALLOCATED_MARKER)) {
      return &simplePoolObjects[i];
    }
  }
  return 0;
}

void IntObjectTestPool::Release(int* object_pointer) {
  int cell = object_pointer - simplePoolObjects;
  simplePool[cell].Store(FREE_MARKER);
}

81
HazardPointerTest::HazardPointerTest() :
82
#ifdef EMBB_PLATFORM_COMPILER_MSVC
83 84 85
#pragma warning(push)
#pragma warning(disable:4355)
#endif
86
delete_pointer_callback_(*this, &HazardPointerTest::DeletePointerCallback),
87
#ifdef EMBB_PLATFORM_COMPILER_MSVC
88 89
#pragma warning(pop)
#endif
90 91 92 93
  object_pool_(NULL),
  stack_(NULL),
  hazard_pointer_(NULL),
  n_threads_(static_cast<int>
94
  (partest::TestSuite::GetDefaultNumThreads())) {
95 96
  n_elements_per_thread_ = 100;
  n_elements_ = n_threads_*n_elements_per_thread_;
97
  embb::base::Function < void, embb::base::Atomic<int>* >
98
    deletePointerCallback(
99 100 101 102 103 104 105 106 107 108
    *this,
    &HazardPointerTest::DeletePointerCallback);

  // Kind of timing depending test. But tests exactly what hazard pointers are
  // designed for. One thread creates an element, does something, retires it.
  // Another thread also accesses this element (passed using a stack), by
  // placing a guard it protects this element. If the guard was successfully
  // placed, the pointer is not allowed to be deleted until the second thread
  // removes this guard.
  CreateUnit("HazardPointerTestThatGuardWorks").
109
    Pre(&HazardPointerTest::HazardPointerTest1Pre, this).
110
    Add(
111 112 113
    &HazardPointerTest::HazardPointerTest1ThreadMethod,
    this, static_cast<size_t>(n_threads_)).
    Post(&HazardPointerTest::HazardPointerTest1Post, this);
114 115
}

116
void HazardPointerTest::HazardPointerTest1Pre() {
117
  embb_internal_thread_index_reset();
118 119 120 121 122 123 124 125 126 127 128 129 130 131

  object_pool_ =
     embb::base::Allocation::
     New<embb::containers::ObjectPool< embb::base::Atomic<int> > >
     (static_cast<size_t>(n_elements_));

  stack_ = embb::base::Allocation::
    New<embb::containers::LockFreeStack< embb::base::Atomic<int>* > >
    (static_cast<size_t>(n_elements_));

  hazard_pointer_ = embb::base::Allocation::
    New<embb::containers::internal::HazardPointer < embb::base::Atomic<int>* > >
    (delete_pointer_callback_,
    static_cast<embb::base::Atomic<int>*>(NULL),
132 133 134
    1);
}

135 136 137 138
void HazardPointerTest::HazardPointerTest1Post() {
  embb::base::Allocation::Delete(hazard_pointer_);
  embb::base::Allocation::Delete(object_pool_);
  embb::base::Allocation::Delete(stack_);
139 140
}

141
void HazardPointerTest::HazardPointerTest1ThreadMethod() {
142 143 144
  unsigned int thread_index;
  embb_internal_thread_index(&thread_index);

145 146
  for (int i = 0; i != n_elements_per_thread_; ++i) {
    embb::base::Atomic<int>* allocated_object = object_pool_->Allocate(0);
147

148
    hazard_pointer_->Guard(0, allocated_object);
149

150
    bool success = stack_->TryPush(allocated_object);
151 152 153

    PT_ASSERT(success == true);

154
    embb::base::Atomic<int>* allocated_object_from_different_thread(0);
155 156 157 158 159 160 161

    int diff_count = 0;

    bool same = false;
    bool success_pop;

    while (
162
      (success_pop = stack_->TryPop(allocated_object_from_different_thread))
163 164 165
      == true
      && allocated_object_from_different_thread == allocated_object
      ) {
166 167
      // try to make it probable to get an element from a different thread
      // however, can be the same. Try 10000 times to get a different element.
168 169 170 171
      if (diff_count++ > 10000) {
        same = true;
        break;
      }
172
      success = stack_->TryPush(allocated_object_from_different_thread);
173 174 175 176
      PT_ASSERT(success == true);
    }
    PT_ASSERT(success_pop == true);
    allocated_object->Store(1);
177
    hazard_pointer_->EnqueueForDeletion(allocated_object);
178 179

    if (!same) {
180
      hazard_pointer_->Guard(0, allocated_object_from_different_thread);
181 182 183 184 185 186

      // if this holds, we were successful in guarding... otherwise we
      // were to late, because the pointer has already been added
      // to the retired list.
      if (*allocated_object_from_different_thread == 0) {
        // the pointer must not be deleted here!
187
        vector_mutex_.Lock();
188
        for (std::vector< embb::base::Atomic<int>* >::iterator
189 190
          it = deleted_vector_.begin();
          it != deleted_vector_.end();
191 192 193
        ++it) {
          PT_ASSERT(*it != allocated_object_from_different_thread);
        }
194
        vector_mutex_.Unlock();
195
      }
196
      hazard_pointer_->Guard(0, NULL);
197 198 199 200 201 202
    }
  }
}

void HazardPointerTest::DeletePointerCallback
(embb::base::Atomic<int>* to_delete) {
203 204 205 206 207 208 209 210 211 212 213
  vector_mutex_.Lock();
  deleted_vector_.push_back(to_delete);
  vector_mutex_.Unlock();
}

void HazardPointerTest2::DeletePointerCallback(int* to_delete) {
  test_pool_->Release(to_delete);
}

bool HazardPointerTest2::SetRelativeGuards() {
  unsigned int thread_index;
214 215
  int result = embb_internal_thread_index(&thread_index);
  PT_ASSERT(EMBB_SUCCESS == result);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

  unsigned int my_begin = guards_per_phread_count_*thread_index;
  int guard_number = 0;
  unsigned int alreadyGuarded = 0;

  for (unsigned int i = my_begin; i != my_begin + guards_per_phread_count_;
    ++i) {
    if (shared_guarded_[i] != 0) {
      alreadyGuarded++;
      guard_number++;
      continue;
    }

    int * to_guard = shared_allocated_[i];
    if (to_guard) {
      hazard_pointer_->Guard(guard_number, to_guard);

      // changed in the meantime?
      if (to_guard == shared_allocated_[i].Load()) {
        // guard was successful. Communicate to other threads.
        shared_guarded_[i] = to_guard;
      } else {
        // reset the guard, couldn't guard...
        hazard_pointer_->RemoveGuard(guard_number);
      }
    }
    guard_number++;
  }
  return(alreadyGuarded == guards_per_phread_count_);
}

void HazardPointerTest2::HazardPointerTest2Master() {
  // while the hazard pointer guard array is not full
  int** allocatedLocal = static_cast<int**>(
  embb::base::Allocation::Allocate(sizeof(int*)*guaranteed_capacity_pool_));

  bool full = false;
  while (!full) {
    full = true;
    for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
      if (shared_guarded_[i] == 0) {
        full = false;
        break;
      }
    }

    // not all guards set
    for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
      allocatedLocal[i] = test_pool_->Allocate();
      shared_allocated_[i].Store(allocatedLocal[i]);
    }

    // set my hazards. We do not have to check, this must be successful
    // here.
    SetRelativeGuards();

    // free
    for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
      shared_allocated_[i].Store(0);
      hazard_pointer_->EnqueueForDeletion(allocatedLocal[i]);
    }
  }

  embb::base::Allocation::Free(allocatedLocal);
}

void HazardPointerTest2::HazardPointerTest2Slave() {
  unsigned int thread_index;
  embb_internal_thread_index(&thread_index);

  while (!SetRelativeGuards()) {}
}

void HazardPointerTest2::HazardPointerTest2Pre() {
  embb_internal_thread_index_reset();
  current_master_ = 0;
  sync1_ = 0;
  sync2_ = 0;

  // first the test pool has to be created
  test_pool_ = embb::base::Allocation::New<IntObjectTestPool>
    (pool_size_using_hazard_pointer_);

  // after the pool has been created, we create the hp class
  hazard_pointer_ = embb::base::Allocation::New <
    embb::containers::internal::HazardPointer<int*> >
    (delete_pointer_callback_, static_cast<int*>(NULL),
    static_cast<int>(guards_per_phread_count_), n_threads);

  shared_guarded_ = static_cast<embb::base::Atomic<int*>*>(
    embb::base::Allocation::Allocate(sizeof(embb::base::Atomic<int*>)*
    guaranteed_capacity_pool_));

  for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
    // in-place new for each array cell
    new (&shared_guarded_[i]) embb::base::Atomic < int* >;
  }

  shared_allocated_ = static_cast<embb::base::Atomic<int*>*>(
    embb::base::Allocation::Allocate(sizeof(embb::base::Atomic<int*>)*
    guaranteed_capacity_pool_));

  for (unsigned int i = 0; i !=
  guaranteed_capacity_pool_; ++i) {
    // in-place new for each array cell
    new (&shared_allocated_[i]) embb::base::Atomic < int* >;
  }

  for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
    shared_guarded_[i] = 0;
    shared_allocated_[i] = 0;
  }
}

void HazardPointerTest2::HazardPointerTest2Post() {
  for (unsigned int i = 0; i != static_cast<unsigned int>(n_threads); ++i) {
    for (unsigned int i2 = 0; i2 != static_cast<unsigned int>(n_threads)*
      guards_per_phread_count_; ++i2) {
      if (hazard_pointer_->thread_local_retired_lists_
        [i2 + i*n_threads*guards_per_phread_count_] == NULL) {
        // all retired lists must be completely filled
        PT_ASSERT(false);
      }
    }
  }

  unsigned int checks = 0;
  for (unsigned int i = 0; i != static_cast<unsigned int>(n_threads); ++i) {
    for (unsigned int i2 = 0; i2 != static_cast<unsigned int>(n_threads)*
      guards_per_phread_count_; ++i2) {
      for (unsigned int j = 0; j != static_cast<unsigned int>(n_threads); ++j) {
        for (unsigned int j2 = 0; j2 != static_cast<unsigned int>(n_threads)*
          guards_per_phread_count_; ++j2) {
          if (i2 == j2 && i == j)
            continue;

          // all retired elements have to be disjoint
          PT_ASSERT(
            hazard_pointer_->thread_local_retired_lists_
            [i2 + i*n_threads*guards_per_phread_count_] !=
            hazard_pointer_->thread_local_retired_lists_
            [j2 + j*n_threads*guards_per_phread_count_]);

          checks++;
        }
      }
    }
  }

  // sanity check on the count of expected comparisons.
  PT_ASSERT(
    checks ==
    n_threads*n_threads*guards_per_phread_count_ *
    (n_threads*n_threads*guards_per_phread_count_ - 1));

  std::vector< int* > additionallyAllocated;

  // we should be able to still allocate the guaranteed capacity of
  // elements from the pool.
  for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
    int* allocated = test_pool_->Allocate();

    // allocated is not allowed to be zero
    PT_ASSERT(allocated != NULL);

    // push to vector, to check if elements are disjunctive and to release
    // afterwards.
    additionallyAllocated.push_back(allocated);
  }

  // the pool should now be empty
  PT_ASSERT(test_pool_->Allocate() == NULL);

  // release allocated elements...
  for (unsigned int i = 0; i != additionallyAllocated.size(); ++i) {
    test_pool_->Release(additionallyAllocated[i]);
  }

  // the additionallyAllocated elements shall be disjoint
  for (unsigned int i = 0; i != additionallyAllocated.size(); ++i) {
    for (unsigned int i2 = 0; i2 != additionallyAllocated.size(); ++i2) {
      if (i == i2)
        continue;
      PT_ASSERT(additionallyAllocated[i] !=
        additionallyAllocated[i2]);
    }
  }

  // no allocated element should be in any retired list...
  for (unsigned int a = 0; a != additionallyAllocated.size(); ++a) {
    for (unsigned int i = 0; i != static_cast<unsigned int>(n_threads); ++i) {
      for (unsigned int i2 = 0; i2 != static_cast<unsigned int>(n_threads)*
        guards_per_phread_count_; ++i2) {
        PT_ASSERT(
          hazard_pointer_->thread_local_retired_lists_
          [i2 + i*n_threads*guards_per_phread_count_] !=
          additionallyAllocated[a]);
      }
    }
  }

  for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
    // in-place new for each array cell
    shared_guarded_[i].~Atomic();
  }

  embb::base::Allocation::Free(shared_guarded_);

  for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
    // in-place new for each array cell
    shared_allocated_[i].~Atomic();
  }

  embb::base::Allocation::Free(shared_allocated_);
  embb::base::Allocation::Delete(hazard_pointer_);

  // after deleting the hazard pointer object, all retired pointers have
  // to be returned to the pool!
  std::vector<int*> elementsInPool;

  int* nextElement;
  while ((nextElement = test_pool_->Allocate()) != NULL) {
    for (unsigned int i = 0; i != elementsInPool.size(); ++i) {
      // all elements need to be disjoint
      PT_ASSERT(elementsInPool[i] != nextElement);
    }
    elementsInPool.push_back(nextElement);
  }

  // all elements should have been returned by the hp object, so we should be
  // able to acquire all elements.
  PT_ASSERT(elementsInPool.size() == pool_size_using_hazard_pointer_);

  embb::base::Allocation::Delete(test_pool_);
}

void HazardPointerTest2::HazardPointerTest2ThreadMethod() {
  for (;;) {
    unsigned int thread_index;
455 456
    int result = embb_internal_thread_index(&thread_index);
    PT_ASSERT(EMBB_SUCCESS == result);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

    if (thread_index == current_master_) {
      HazardPointerTest2Master();
    } else {
      HazardPointerTest2Slave();
    }

    sync1_.FetchAndAdd(1);

    // wait until cleanup thread signals to be finished
    while (sync1_ != 0) {
      int expected = n_threads;
      int desired = FINISH_MARKER;
      // select thread, responsible for cleanup
      if (sync1_.CompareAndSwap(expected, desired)) {
        // wipe arrays!
        for (unsigned int i = 0; i != guaranteed_capacity_pool_; ++i) {
          shared_guarded_[i] = 0;
          shared_allocated_[i] = 0;
        }

        // increase master
        current_master_.FetchAndAdd(1);
        sync2_ = 0;
        sync1_.Store(0);
      }
    }

    // wait for all threads to reach this position
    sync2_.FetchAndAdd(1);
    while (sync2_ != static_cast<unsigned int>(n_threads)) {}

    // if each thread was master once, terminate.
    if (current_master_ == static_cast<unsigned int>(n_threads)) {
      return;
    }
  }
}

HazardPointerTest2::HazardPointerTest2() :
n_threads(static_cast<int>
(partest::TestSuite::GetDefaultNumThreads())),

#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(push)
#pragma warning(disable:4355)
#endif
  delete_pointer_callback_(
  *this,
  &HazardPointerTest2::DeletePointerCallback)
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(pop)
#endif
{
  guards_per_phread_count_ = 5;
  guaranteed_capacity_pool_ = guards_per_phread_count_*n_threads;
  pool_size_using_hazard_pointer_ = guaranteed_capacity_pool_ +
    guards_per_phread_count_*n_threads*n_threads;

  embb::base::Thread::GetThreadsMaxCount();
  CreateUnit("HazardPointerTestSimulateMemoryWorstCase").
    Pre(&HazardPointerTest2::HazardPointerTest2Pre, this).
    Add(
    &HazardPointerTest2::HazardPointerTest2ThreadMethod,
    this, static_cast<size_t>(n_threads)).
    Post(&HazardPointerTest2::HazardPointerTest2Post, this);
523
}
524 525 526
}  // namespace test
}  // namespace containers
}  // namespace embb