main.cc 6.09 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#include <linearizability_tester.h>
#include <tests.h>

#include <embb/base/thread.h>
#include <embb/containers/lock_free_stack.h>
#include <embb/containers/lock_free_mpmc_queue.h>

template<std::size_t N, class S>
static void embb_worker_stack(
	const WorkerConfiguration& worker_configuration,
	ConcurrentLog<state::Stack<N>>& concurrent_log,
	S& concurrent_stack)
{
	std::random_device rd;
	std::mt19937 gen(rd());
	std::uniform_int_distribution<> value_dist('\0', worker_configuration.max_value);
	std::uniform_int_distribution<> percentage_dist(0, 100);

	// each operation returns false
	bool ret;

	char value;
	unsigned percentage;
	EntryPtr<state::Stack<N>> call_entry_ptr;
	for (unsigned number_of_ops{ 0U };
	number_of_ops < worker_configuration.number_of_ops;
		++number_of_ops)
	{
		value = value_dist(rd);
		percentage = percentage_dist(rd);
		if (percentage < 30)
		{
			call_entry_ptr = concurrent_log.push_back(state::Stack<N>::make_try_push_call(value));
			ret = concurrent_stack.TryPush(value);
			concurrent_log.push_back(call_entry_ptr, state::Stack<N>::make_try_push_ret(ret));
		}
		else
		{
			call_entry_ptr = concurrent_log.push_back(state::Stack<N>::make_try_pop_call());
			ret = concurrent_stack.TryPop(value);
			concurrent_log.push_back(call_entry_ptr, state::Stack<N>::make_try_pop_ret(ret, value));
		}
	}
}

template<std::size_t N, class S>
static void embb_worker_queue(
	const WorkerConfiguration& worker_configuration,
	ConcurrentLog<state::Queue<N>>& concurrent_log,
	S& concurrent_queue)
{
	std::random_device rd;
	std::mt19937 gen(rd());
	std::uniform_int_distribution<> value_dist('\0', worker_configuration.max_value);
	std::uniform_int_distribution<> percentage_dist(0, 100);

	// each operation returns false
	bool ret;

	char value;
	unsigned percentage;
	EntryPtr<state::Queue<N>> call_entry_ptr;
	for (unsigned number_of_ops{ 0U };
	number_of_ops < worker_configuration.number_of_ops;
		++number_of_ops)
	{
		value = value_dist(rd);
		percentage = percentage_dist(rd);
		if (percentage < 20)
		{
			call_entry_ptr = concurrent_log.push_back(state::Queue<N>::make_try_enqueue_call(value));
			ret = concurrent_queue.TryEnqueue(value);
			concurrent_log.push_back(call_entry_ptr, state::Queue<N>::make_try_enqueue_ret(ret));
		}
		else
		{
			call_entry_ptr = concurrent_log.push_back(state::Queue<N>::make_try_dequeue_call());
			ret = concurrent_queue.TryDequeue(value);
			concurrent_log.push_back(call_entry_ptr, state::Queue<N>::make_try_dequeue_ret(ret, value));
		}
	}
}

template <class S>
static void embb_experiment_stack(bool is_linearizable)
{
	constexpr std::chrono::hours max_duration{ 1 };
	constexpr std::size_t N = 560000U;
	constexpr unsigned number_of_threads = 4U;
	constexpr WorkerConfiguration worker_configuration = { '\24', 70000U };
	constexpr unsigned log_size = number_of_threads * worker_configuration.number_of_ops;

	Result<state::Stack<N>> result;
	ConcurrentLog<state::Stack<N>> concurrent_log{ 2U * log_size };
	S concurrent_stack(N);

	if (!is_linearizable)
	{
		bool ok = concurrent_stack.TryPush(5);
		assert(ok);
	}

	// create history
	start_threads(number_of_threads, embb_worker_stack<N, S>, std::cref(worker_configuration),
		std::ref(concurrent_log), std::ref(concurrent_stack));

	const std::size_t number_of_entries{ concurrent_log.number_of_entries() };
	const LogInfo<state::Stack<N>> log_info{ concurrent_log.info() };

	auto start = std::chrono::system_clock::now();
	auto end = std::chrono::system_clock::now();
	std::chrono::seconds seconds;

	start = std::chrono::system_clock::now();
	{
		Log<state::Stack<N>> log_copy{ log_info };
		assert(log_copy.number_of_entries() == number_of_entries);

		LinearizabilityTester<state::Stack<N>, Option::LRU_CACHE> tester{ log_copy.info(), max_duration };
		tester.check(result);
		assert(result.is_timeout() || result.is_linearizable() == is_linearizable);
	}
	end = std::chrono::system_clock::now();
	seconds = std::chrono::duration_cast<std::chrono::seconds>(end - start);
	std::cout << "History length: " << number_of_entries
		<< ", elapsed time: "
		<< seconds.count() << " s " << std::endl;
}

template <class S>
static void embb_experiment_queue(bool is_linearizable)
{
	constexpr std::chrono::hours max_duration{ 1 };
	constexpr std::size_t N = 560000U;
	constexpr unsigned number_of_threads = 4U;
	constexpr WorkerConfiguration worker_configuration = { '\24', 70000U };
	constexpr unsigned log_size = number_of_threads * worker_configuration.number_of_ops;


	Result<state::Queue<N>> result;
	ConcurrentLog<state::Queue<N>> concurrent_log{ 2U * log_size };
	S concurrent_queue(N);

	if (!is_linearizable)
	{
		bool ok = concurrent_queue.TryEnqueue(5);
		assert(ok);
	}

	// create history
	start_threads(number_of_threads, embb_worker_queue<N, S>, std::cref(worker_configuration),
		std::ref(concurrent_log), std::ref(concurrent_queue));
	const std::size_t number_of_entries{ concurrent_log.number_of_entries() };
	const LogInfo<state::Queue<N>> log_info{ concurrent_log.info() };
	// std::cout << log_info << std::endl;

	auto start = std::chrono::system_clock::now();
	auto end = std::chrono::system_clock::now();
	std::chrono::seconds seconds;

	start = std::chrono::system_clock::now();
	{
		Log<state::Queue<N>> log_copy{ log_info };
		assert(log_copy.number_of_entries() == number_of_entries);
		LinearizabilityTester<state::Queue<N>, Option::LRU_CACHE> tester{ log_copy.info(), max_duration };
		tester.check(result);
		assert(result.is_timeout() || result.is_linearizable() == is_linearizable);
	}
	end = std::chrono::system_clock::now();
	seconds = std::chrono::duration_cast<std::chrono::seconds>(end - start);
	std::cout << "History length: " << number_of_entries
		<< ", elapsed time:  "
		<< seconds.count() << " s " << std::endl;
}


int main()
{	

  // Test functions and structures in linearizability_tester.h
  run_tests();

  embb::base::Thread::SetThreadsMaxCount(255);
  
  std::cout << "Linearizability test on LockFreeMPMCQueue" << std::endl;
  embb_experiment_queue<embb::containers::LockFreeMPMCQueue<char>>(true);

  std::cout << "Linearizability test on LockFreeStack" << std::endl;
  embb_experiment_stack<embb::containers::LockFreeStack<char>>(true);
  return 0;
}