linearizability_tester.h 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
// Alex Horn, University of Oxford
//
// The source code is structured into three main parts:
//
// 1) Data structures and algorithm of the linearizability tester,
//    including a new optional partitioning algorithm;
//
// 2) Immutable data types for sets, registers and stacks with
//    efficient equality checks;
//
// 3) Unit tests and experiments with TBB, EMBB, and etcd.

13 14 15
#ifndef __LINEARIZABILITY_TESTER
#define __LINEARIZABILITY_TESTER 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#include <thread>
#include <atomic>
#include <mutex>
#include <tuple>
#include <memory>
#include <vector>
#include <climits>
#include <cstddef>
#include <utility>
#include <cassert>
#include <type_traits>
#include <unordered_set>
#include <unordered_map>
#include <fstream>
#include <sstream>
#include <string>
#include <stdexcept>
#include <list>

// functional testing and experiments
#include <random>
#include <functional>
#include <iostream>

/// Allow users to print out counterexamples
#define _LT_DEBUG_

/// Built-in timeout feature
#define _LT_TIMEOUT_

#ifdef _LT_DEBUG_
#include <string>
#include <ostream>
#include <sstream>
#include <string>
#include <algorithm>
#endif



#ifdef _LT_TIMEOUT_
#include <chrono>
#endif

#ifdef _DEBUG
#ifndef DBG_NEW
#define DBG_NEW new ( _NORMAL_BLOCK , __FILE__ , __LINE__ )
#define new DBG_NEW
#endif
#endif  // _DEBUG


#if __cplusplus <= 201103L
// since C++14 in std, see Herb Sutter's blog
template<class T, class ...Args>
std::unique_ptr<T> make_unique(Args&& ...args)
{
73
  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
74 75 76 77 78
}
#else
using std::make_unique;
#endif

79 80


81 82 83
/// Linearizability tester
namespace lt
{
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/************* Core data structures && algorithms *************/

template<class S>
class Entry;

/// Doubly-linked list of log entries

/// S - sequential data type
template<class S>
using EntryPtr = Entry<S>*;

/// Bounded stack of call entries that have been linearized
/// S - sequential data type
template<class S>
class Stack
{  
 private:
  typedef std::tuple<EntryPtr<S>, S> Pair;
  typedef std::vector<Pair> Pairs;
  typedef typename Pairs::size_type SizeType;

  // A constant-size vector
  Pairs m_vector;
  SizeType m_top;

 public:
  /// Create a new stack of bounded height

  /// \post: if capacity is positive, then !is_full()
  Stack(SizeType capacity)
    : m_vector(capacity), m_top{ 0U }
  {
    assert(capacity == 0U || !is_full());
  }

  /// History length in the stack
  SizeType size() const noexcept
  {
    return m_top;
  }

  /// Is size() zero?
  bool is_empty() const noexcept
  {
    return 0U == size();
  }

  /// Is size() equal to the stack's capacity?
  bool is_full() const noexcept
  {
    return m_top == m_vector.size();
  }

  /// \pre: !is_empty()
  const Pair& top() const noexcept
  {
    assert(!is_empty());
    return m_vector[m_top - 1U];
  }

  /// Add an entry to the top() of the stack

  /// \pre: !is_full()
  /// \pre: ptr->is_call()
  void push(EntryPtr<S>, S&&);

  /// Remove count entries from the stack

  /// \pre: 0 < count <= size()
  void pop(unsigned count = 1U)
  {
    assert(0U < count);
    assert(count <= size());

    m_top -= count;
  }

  /// \internal
  EntryPtr<S> entry_ptr(std::size_t pos)
  {
    assert(pos < m_top);
    return std::get<0>(m_vector[pos]);
  }
};

enum class Option : unsigned char
{
  NEVER_CACHE,
  LRU_CACHE,
  ALWAYS_CACHE,
};

template<class S> class Entry;
template<class S> class Log;
template<class S> class ConcurrentLog;
template<class S> class Slicer;
template<class S, Option> class LinearizabilityTester;

/// A kind of "functor" in C++ terminology

/// S - sequential data type
template<class S>
class Op
{
 private:
  friend class Entry<S>;

  // Is m_partition defined?
  bool m_is_partitionable;
  unsigned m_partition;

  // modified by Entry
  unsigned ref_counter;
197 198

#ifdef _LT_DEBUG_
199
  virtual std::ostream& print(std::ostream&) const = 0;
200 201
#endif

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  virtual std::pair<bool, S> internal_apply(const S&, const Op<S>&)
  {
    return{};
  }

 public:
  Op()
    : m_is_partitionable{ false },
    m_partition{ 0U },
    ref_counter{ 0U } {}

  Op(unsigned partition)
    : m_is_partitionable{ true },
    m_partition{ partition },
    ref_counter{ 0U } {}

  Op(bool is_partitionable, unsigned partition)
    : m_is_partitionable{ is_partitionable },
    m_partition{ partition },
    ref_counter{ 0U } {}

  virtual ~Op()
  {
    assert(ref_counter == 0);
  }

  /// Is partition() defined?
  bool is_partitionable() const noexcept
  {
    return m_is_partitionable;
  }

  /// \pre: is_partitionable()
  unsigned partition() const
  {
    assert(m_is_partitionable);
    return m_partition;
  }

  /// Returns true exactly if the operation could be applied
  std::pair<bool, S> apply(const S& s, const Op<S>& op)
  {
    return internal_apply(s, op);
  }
246 247

#ifdef _LT_DEBUG_
248 249 250 251
  friend std::ostream& operator<<(std::ostream& os, const Op& op)
  {
    return op.print(os);
  }
252
#endif
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
};

/// Fixed-size set of bits with persistence features
class Bitset
{
 public:
  typedef std::size_t Pos;

 private:
  friend struct BitsetHash;
  friend class FlexibleBitset;

  typedef unsigned long Block;
  typedef std::vector<Block> Blocks;
  typedef Blocks::size_type BlockIndex;

  /// Accessible bits in a Block
  typedef unsigned BlockWidth;

  static constexpr BlockWidth s_bits_per_block =
    static_cast<BlockWidth>(sizeof(Block) * CHAR_BIT);

  static BlockIndex block_index(Pos pos) noexcept
  {
    return pos / s_bits_per_block;
  }

  static BlockIndex blocks_size(Pos max_pos) noexcept
  {
    return block_index(max_pos) + 1U;
  }

  static BlockWidth bit_index(Pos pos) noexcept
  {
    return static_cast<BlockWidth>(pos % s_bits_per_block);
  }

  static Block bit_mask(Pos pos) noexcept
  {
    return Block(1U) << bit_index(pos);
  }

  /// only resized by FlexibleBitset
  Blocks m_blocks;

  std::size_t m_hash;
  unsigned m_number_of_set_bits;

  Block& find_block(Pos pos)
  {
    BlockIndex i{ block_index(pos) };
    assert(i < m_blocks.size());
    return m_blocks[i];
  }

  // We exploit the fact that XOR forms an abelian group:
  // first, clear hash of old block; then, hash new block.
  void update_hash(Block old_block, Block new_block)
  {
    m_hash ^= old_block;
    m_hash ^= new_block;
  }

 public:
  Bitset(Pos max_pos)
    : m_blocks(blocks_size(max_pos)),
    m_hash{ 0U },
    m_number_of_set_bits{ 0U } {}

  bool is_empty() const noexcept
  {
    return m_number_of_set_bits == 0U;
  }

  bool set(Pos pos)
  {
    Block& block = find_block(pos);
    const Block copy_block{ block };
    block |= bit_mask(pos);

    update_hash(copy_block, block);

    bool ok{ block != copy_block };
    m_number_of_set_bits += ok;
    return ok;
  }

  Bitset immutable_set(Pos pos) const
  {
    Bitset copy{ *this };
    copy.set(pos);
    return copy;
  }

  bool is_set(Pos pos) const
  {
    BlockIndex i{ block_index(pos) };
    if (i < m_blocks.size())
      return (m_blocks[i] & bit_mask(pos)) != 0U;

    return false;
  }

  bool reset(Pos pos)
  {
    Block& block = find_block(pos);
    const Block copy_block{ block };
    block &= ~bit_mask(pos);

    update_hash(copy_block, block);

    bool ok{ block != copy_block };
    m_number_of_set_bits -= ok;
    return ok;
  }

  Bitset immutable_reset(Pos pos) const
  {
    Bitset copy{ *this };
    copy.reset(pos);
    return copy;
  }

  // Same number of blocks && identical bits in all those blocks?
  bool operator==(const Bitset& other) const noexcept
  {
    return m_number_of_set_bits == other.m_number_of_set_bits  && 
      m_blocks == other.m_blocks;
  }

  bool operator!=(const Bitset& other) const noexcept
  {
    return m_number_of_set_bits != other.m_number_of_set_bits || 
      m_blocks != other.m_blocks;
  }
};

/// Constant-time, O(1), hash function
struct BitsetHash
{
  std::size_t operator()(const Bitset& bitset) const noexcept
  {
    return bitset.m_hash;
  }
};

/// States of abstract data types
namespace state
{
  template<class T>
  struct Hash
  {
    std::size_t operator()(const T&) const noexcept;
  };
}

template<class S>
using OpPtr = std::unique_ptr<Op<S>>;

/// Call/ret log entry

/// S - sequential data type
template<class S>
class Entry
{
 private:
  friend class Log<S>;
  friend class Slicer<S>;
  friend class LinearizabilityTester<S, Option::NEVER_CACHE>;
  friend class LinearizabilityTester<S, Option::LRU_CACHE>;
  friend class LinearizabilityTester<S, Option::ALWAYS_CACHE>;

  // Ref counted pointer because we need to copy logs so that we
  // can experimentally compare different linearizability testers
  //
  // However, this is an implementation detail and the strict type
  // of OpPtr<S> enforces at compile-time that we manage the
  // ownership of these kind of pointers on the user's behalf.
  Op<S>* m_op_ptr;
  unsigned m_entry_id;
  std::thread::id m_thread_id;
  EntryPtr<S> m_match;
  bool m_is_call;

  void inc_ref_counter() const noexcept
  {
    if (m_op_ptr != nullptr)
      ++m_op_ptr->ref_counter;
  }

  void dec_ref_counter() const
  {
    assert(m_op_ptr == nullptr || 0 < m_op_ptr->ref_counter);

    if (m_op_ptr != nullptr && --m_op_ptr->ref_counter == 0)
      delete m_op_ptr;
  }

  /// Log head

  /// \post: if _next is !nullptr, then _next->prev == this
  Entry(EntryPtr<S> _next)
    : m_op_ptr{ nullptr },
    m_entry_id{},
    m_thread_id{},
    m_match{ nullptr },
    m_is_call{ false },
    prev{ nullptr },
    next{ _next }
  {
    if (_next != nullptr)
      _next->prev = this;
  }

 public:
  ~Entry()
  {
    dec_ref_counter();
  }

  EntryPtr<S> prev;
  EntryPtr<S> next;

  Entry()
    : m_op_ptr{ nullptr },
    m_entry_id{},
    m_thread_id{},
    m_match{ nullptr },
    m_is_call{ false },
    prev{ nullptr },
    next{ nullptr } {}

  Entry(const Entry& entry)
    : m_op_ptr{ entry.m_op_ptr },
    m_entry_id{ entry.m_entry_id },
    m_thread_id{ entry.m_thread_id },
    m_match{ entry.m_match },
    m_is_call{ entry.m_is_call },
    prev{ entry.prev },
    next{ entry.next }
  {
    inc_ref_counter();
  }

  Entry& operator=(const Entry& entry)
  {
    entry.inc_ref_counter();
    dec_ref_counter();

    m_op_ptr = entry.m_op_ptr;
    m_entry_id = entry.m_entry_id;
    m_thread_id = entry.m_thread_id;
    m_match = entry.m_match;
    m_is_call = entry.m_is_call;
    prev = entry.prev;
    next = entry.next;

    return *this;
  }

  Entry& operator=(Entry&& entry)
  {
    // only decrement required (due to move semantics)
    dec_ref_counter();

    m_op_ptr = entry.m_op_ptr;
    m_entry_id = entry.m_entry_id;
    m_thread_id = entry.m_thread_id;
    m_match = entry.m_match;
    m_is_call = entry.m_is_call;
    prev = entry.prev;
    next = entry.next;

    entry.m_op_ptr = nullptr;
    entry.m_entry_id = 0;
    entry.m_thread_id = 0;
    entry.m_match = nullptr;
    entry.m_is_call = false;
    entry.prev = nullptr;
    entry.next = nullptr;

    return *this;
  }

  /// \pre: set_match && set_op have been called with non-null arguments
  bool is_partitionable() const
  {
    assert(m_match != nullptr);
    assert(m_match->m_op_ptr != nullptr);
    assert(m_op_ptr->m_is_partitionable == m_match->m_op_ptr->m_is_partitionable);
    assert(m_op_ptr->m_partition == m_match->m_op_ptr->m_partition);

    return m_op_ptr->m_is_partitionable;
  }

  void set_op(OpPtr<S>&& op_ptr) noexcept
  {
    m_op_ptr = op_ptr.release();
    inc_ref_counter();
  }

  Op<S>& op() const
  {
    assert(m_op_ptr != nullptr);
    return *m_op_ptr;
  }

  const Op<S>* const op_ptr() const noexcept
  {
    return m_op_ptr;
  }

  void set_entry_id(unsigned entry_id) noexcept
  {
    m_entry_id = entry_id;
  }

  unsigned entry_id() const noexcept
  {
    return m_entry_id;
  }

  void set_thread_id(std::thread::id thread_id) noexcept
  {
    m_thread_id = thread_id;
  }

  std::thread::id thread_id() const noexcept
  {
    return m_thread_id;
  }

  /// \pre: ret_entry_ptr->match() == nullptr
  /// \pre: !ret_entry_ptr->is_call()
  ///
  /// \post: this->is_call()
  /// \post: this == ret_entry_ptr->match()
  /// \post: this->match() == ret_entry_ptr
  /// \post: this->entry_id() == ret_entry_ptr->entry_id()
  /// \post: if this->is_partitionable() || ret_entry_ptr->is_partitionable(),
  ///        then this->op().partition() == ret_entry_ptr->op().partition()
  void set_match(EntryPtr<S> ret_entry_ptr) noexcept
  {
    assert(ret_entry_ptr->m_match == nullptr);
    assert(!ret_entry_ptr->is_call());

    ret_entry_ptr->m_match = this;
    ret_entry_ptr->set_entry_id(m_entry_id);

    if (ret_entry_ptr->op().m_is_partitionable)
    {
      op().m_is_partitionable = ret_entry_ptr->op().m_is_partitionable;
      op().m_partition = ret_entry_ptr->op().m_partition;
    }
    else
    {
      ret_entry_ptr->op().m_is_partitionable = op().m_is_partitionable;
      ret_entry_ptr->op().m_partition = op().m_partition;
    }

    m_match = ret_entry_ptr;
    m_is_call = true;

    assert(is_call());
    assert(this == ret_entry_ptr->match());
    assert(match() == ret_entry_ptr);
    assert(entry_id() == ret_entry_ptr->entry_id());
    assert(op().m_is_partitionable == ret_entry_ptr->op().m_is_partitionable);
    assert(op().m_partition == ret_entry_ptr->op().m_partition);
  }

  EntryPtr<S> match() const noexcept
  {
    return m_match;
  }

  bool is_call() const noexcept
  {
    return m_is_call;
  }
};
634 635

#ifdef _LT_DEBUG_
636 637 638 639 640 641 642 643 644 645 646 647 648 649
/// S - sequential data type
template<class S>
std::ostream& operator<<(std::ostream& os, EntryPtr<S> entry_ptr)
{
  if (entry_ptr == nullptr)
    return os << "entry id: none, thread id: none [nullptr]";

  const Entry<S>& entry = *entry_ptr;
  return os <<
    "entry id: " << entry.entry_id() <<
    ", thread id: " << entry.thread_id() <<
    ", " << (entry.is_call() ? "call: " : "return: ") <<
    entry.op();
}
650 651
#endif

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
template<class S>
void Stack<S>::push(EntryPtr<S> ptr, S&& s)
{
  assert(!is_full());
  assert(ptr != nullptr);
  assert(ptr->is_call());

  // no overflow
  m_vector[m_top++] = std::make_pair(ptr, std::move(s));
  assert(0U != m_top);
}

/// Input to linearizabilty testers

/// S - sequential data type
template<class S>
class LogInfo
{
 private:
  friend class Slicer<S>;

  EntryPtr<S> m_log_head_ptr;
  std::size_t m_number_of_entries;

 public:
  /// \post: is_empty()
  LogInfo() : m_log_head_ptr{ nullptr }, m_number_of_entries{ 0U } {}

  /// \pre: number_of_entries is positive && even
  /// \pre: log_head_ptr is !nullptr
  /// \post: !is_empty()
  LogInfo(EntryPtr<S> log_head_ptr, std::size_t number_of_entries)
    : m_log_head_ptr{ log_head_ptr }, m_number_of_entries{ number_of_entries }
  {
    assert(log_head_ptr != nullptr);
    assert(0U < m_number_of_entries);
    assert((m_number_of_entries & 1U) == 0U);
  }

  /// Ptr to the first entry in the log
  EntryPtr<S> log_head_ptr() const noexcept
  {
    return m_log_head_ptr;
  }

  /// Total number of call entries plus return entries.

  /// Returns even number since every call is paired with a return
  std::size_t number_of_entries() const noexcept
  {
    return m_number_of_entries;
  }

  bool is_empty() const noexcept
  {
    return m_log_head_ptr == nullptr && m_number_of_entries == 0U;
  }
};
710 711

#ifdef _LT_DEBUG_
712 713 714 715 716 717 718 719 720 721 722 723
/// S - sequential data type
template<class S>
std::ostream& operator<<(std::ostream& os, const LogInfo<S>& log_info)
{
  EntryPtr<S> entry_ptr{ log_info.log_head_ptr() };

  os << "log info, number of entries: " << log_info.number_of_entries() << std::endl;
  for (; entry_ptr != nullptr; entry_ptr = entry_ptr->next)
    os << entry_ptr << std::endl;

  return os;
}
724 725
#endif

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/// Bounded history log

/// If you need thread-safety, use ConcurrentLog<S> instead.
///
/// S - sequential data type
template<class S>
class Log
{
 private:
  // fixed-size vector
  typedef std::vector<Entry<S>> Entries;

 public:
  typedef typename Entries::size_type Size;

 private:
  // we never resize the vector and so pointers into it are stable
  Size m_entry_id, m_index;
  Entries m_entries;
  EntryPtr<S> m_last_entry_ptr;

  void link(Entry<S>& entry) noexcept
  {
    if (m_last_entry_ptr != nullptr)
      m_last_entry_ptr->next = &entry;

    entry.prev = m_last_entry_ptr;
  }

 public:
  Log(const Log&) = delete;

  /// A history with at most capacity entries
  Log(Size capacity)
    : m_entry_id{ 0U },
    m_index{ 0U },
    m_entries(capacity),
    m_last_entry_ptr{ nullptr } {}

  /// Copy entries
  Log(LogInfo<S> log_info)
    : m_entry_id{ 0U },
    m_index{ 0U },
    m_entries(log_info.number_of_entries()),
    m_last_entry_ptr{ nullptr }
  {
    EntryPtr<S> entry_ptr{ log_info.log_head_ptr() };
    std::vector<unsigned> matches(log_info.number_of_entries() >> 1);

    while (entry_ptr != nullptr)
    {
      assert(m_index < m_entries.size());

      Entry<S>& new_entry = m_entries[m_index];
      new_entry = *entry_ptr;
      new_entry.m_match = nullptr;
      link(new_entry);

      if (new_entry.is_call())
      {
        matches[new_entry.entry_id()] = m_index;
      }
      else
      {
        Entry<S>& call_entry = m_entries[matches[new_entry.entry_id()]];
        call_entry.set_match(&new_entry);
      }

      m_last_entry_ptr = &new_entry;
      entry_ptr = entry_ptr->next;
      ++m_index;
    }

    assert(m_index == m_entries.size());
    assert(entry_ptr == nullptr);
  }

  EntryPtr<S> add_call(OpPtr<S>&& op_ptr)
  {
    assert(m_index < m_entries.size());

    Entry<S>& entry = m_entries[m_index++];
    entry.set_op(std::move(op_ptr));
    entry.set_entry_id(m_entry_id++);

    link(entry);
    m_last_entry_ptr = &entry;
    return m_last_entry_ptr;
  }

  /// \post: call_entry_ptr->is_call()
  EntryPtr<S> add_ret(EntryPtr<S> call_entry_ptr, OpPtr<S>&& op_ptr)
  {
    assert(m_index < m_entries.size());

    Entry<S>& entry = m_entries[m_index++];
    entry.set_op(std::move(op_ptr));
    link(entry);

    m_last_entry_ptr = &entry;
    call_entry_ptr->set_match(m_last_entry_ptr);

    assert(call_entry_ptr->is_call());
    assert(m_entry_id <= m_index);

    return m_last_entry_ptr;
  }

  EntryPtr<S> log_head_ptr()
  {
    return &m_entries.front();
  }

  /// Total number of call entries plus return entries.

  /// Returns even number since every call is paired with a return
  std::size_t number_of_entries() const noexcept
  {
    return m_index;
  }

  LogInfo<S> info()
  {
    return{ log_head_ptr(), number_of_entries() };
  }
};

/// Output of linearizability tester

/// S - sequential data type
template<class S>
class Result
{
 private:
  friend class LinearizabilityTester<S, Option::NEVER_CACHE>;
  friend class LinearizabilityTester<S, Option::LRU_CACHE>;
  friend class LinearizabilityTester<S, Option::ALWAYS_CACHE>;
  typedef std::vector<EntryPtr<S>> EntryPtrs;

  bool m_is_linearizable;
  EntryPtrs m_entry_ptrs;
867 868

#ifdef _LT_DEBUG_
869 870
  unsigned m_cutoff_entry_id;
  EntryPtr<S> m_log_head_ptr;
871 872
#endif

873
  bool m_is_timeout;
874

875 876
  double m_virtual_memory_usage;
  double m_resident_set_size;
877

878 879 880 881
  void reset()
  {
    m_is_linearizable = true;
    m_entry_ptrs.clear();
882
#ifdef _LT_DEBUG_
883 884
    m_cutoff_entry_id = 0U;
    m_log_head_ptr = nullptr;
885
#endif
886 887 888 889 890 891 892 893 894 895
    m_is_timeout = false;
    m_virtual_memory_usage = 0.0;
    m_resident_set_size = 0.0;
  }

 public:
  /// Initially linearizable
  Result()
    : m_is_linearizable{ true },
    m_entry_ptrs{},
896
#ifdef _LT_DEBUG_
897 898
    m_cutoff_entry_id{ 0U },
    m_log_head_ptr{ nullptr },
899
#endif
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
    m_is_timeout{ false },
    m_virtual_memory_usage{ 0.0 },
    m_resident_set_size{ 0.0 } {}

  /// \pre: !is_timeout()
  bool is_linearizable() const noexcept
  {
    assert(!is_timeout());
    return m_is_linearizable;
  }

  bool is_timeout() const noexcept
  {
    return m_is_timeout;
  }

  /// Zero if unknown, unit: MiB
  double virtual_memory_usage() const noexcept
  {
    return m_virtual_memory_usage;
  }

  /// Zero if unknown, unit: MiB
  double resident_set_size() const noexcept
  {
    return m_resident_set_size;
  }
927 928

#ifdef _LT_DEBUG_
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
  void debug(std::ostream& os, bool verbose = false)
  {
    os << "Linearizable: ";
    if (m_is_linearizable)
    {
      os << "Yes" << std::endl;
      for (EntryPtr<S> entry_ptr : m_entry_ptrs)
        os << entry_ptr << " : " << entry_ptr->match() << std::endl;

      return;
    }

    os << "No" << std::endl;
    EntryPtr<S> entry_ptr{ m_log_head_ptr };
    for (; entry_ptr != nullptr; entry_ptr = entry_ptr->next)
    {
      os << entry_ptr << std::endl;
      if (entry_ptr->entry_id() == m_cutoff_entry_id)
      {
        os << "^ previous entries cannot be linearized" << std::endl;

        if (!(verbose || entry_ptr->is_call()))
          return;
      }
    }
  }
955
#endif
956
};
957 958

#ifdef _LT_TIMEOUT_
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
template <typename Clock = std::chrono::steady_clock>
struct Timeout
{
  const typename Clock::time_point start_time;
  const typename Clock::duration max_duration;

  Timeout()
    : start_time{ Clock::now() },
    max_duration{ Clock::duration::max() } {}

  Timeout(typename Clock::duration duration)
    : start_time{ Clock::now() },
    max_duration{ duration } {}

  bool is_expired() const
  {
    return max_duration < (Clock::now() - start_time);
  }
};
978 979
#endif

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/// Least-recently used cache eviction
template<class Key, class Hash = std::hash<Key>>
class LruCache
{
 private:
  typedef std::list<Key> List;
  typedef typename List::iterator ListIterator;
  typedef std::unordered_map<Key, ListIterator, Hash> UnorderedMap;
  typedef typename UnorderedMap::size_type Capacity;

  const Capacity m_capacity;

  UnorderedMap m_unordered_map;
  List m_list;

 public:
  typedef typename UnorderedMap::iterator Iterator;

  LruCache()
    : m_capacity{ 4096 },
    m_unordered_map{ m_capacity } {}

  LruCache(Capacity capacity)
    : m_capacity{ capacity },
    m_unordered_map{ m_capacity } {}

  bool insert(Key&& key)
  {
    std::pair<Iterator, bool> pair{ m_unordered_map.insert(
      std::make_pair(std::move(key), m_list.end())) };

    if (pair.second)
      pair.first->second = m_list.insert(m_list.end(), pair.first->first);
    else
      m_list.splice(m_list.end(), m_list, pair.first->second);

    if (m_unordered_map.size() == m_capacity)
    {
      auto iter = m_unordered_map.find(m_list.front());
      assert(iter != m_unordered_map.cend());
      m_unordered_map.erase(iter);
      m_list.pop_front();
    }

    return pair.second;
  }
};

namespace cache
{
  // regardless of caching, we need to keep track of the current state of type S
  template<class S>
  using State = std::pair<Bitset, S>;

  // if caching is enabled, we use these hash functions
  template<class S>
  class StateHash
  {
   private:
    // courtesy of Daniel Kroening, see CPROVER source file util/irep.cpp
    static inline size_t hash_rotl(std::size_t value, unsigned shift)
    {
      return (value << shift) | (value >> ((sizeof(value) * 8U) - shift));
    }

    // courtesy of Daniel Kroening, see CPROVER source file util/irep.cpp
    static inline size_t hash_combine(std::size_t h1, std::size_t h2)
    {
      return hash_rotl(h1, 7U) ^ h2;
    }

    const BitsetHash m_bitset_hash;
    const state::Hash<S> m_s_hash;

   public:
    StateHash() : m_bitset_hash{}, m_s_hash{} {}

    std::size_t operator()(const State<S>& state) const noexcept
    {
      return hash_combine(m_bitset_hash(state.first), m_s_hash(state.second));
    }
  };

  template<class S, Option option = Option::NEVER_CACHE>
  struct Switch
  {
    typedef std::nullptr_t Type;

    static bool try_insert(const S& s, const EntryPtr<S>  entry_ptr,
      Type& cache, Bitset& bitset)
    {
      return true;
    }
  };

  template<class S>
  struct Switch<S, Option::LRU_CACHE>
  {
    typedef LruCache<State<S>, StateHash<S>> Type;

    static bool try_insert(const S& s, const EntryPtr<S>  entry_ptr,
      Type& cache, Bitset& bitset)
    {
      return cache.insert(std::make_pair(bitset.immutable_set(entry_ptr->entry_id()), s));
    }
  };

  template<class S>
  struct Switch<S, Option::ALWAYS_CACHE>
  {
    typedef std::unordered_set<State<S>, StateHash<S>> Type;

    static bool try_insert(const S& s, const EntryPtr<S>  entry_ptr,
      Type& cache, Bitset& bitset)
    {
      unsigned int pos = entry_ptr->entry_id();
      lt::Bitset bs = bitset.immutable_set(pos);
      return std::get<1>(cache.emplace(bs, s));
    }
  };
}

/// S - sequential data type
template<class S, Option option = Option::ALWAYS_CACHE>
class LinearizabilityTester
{
 private:
  typedef cache::Switch<S, option> Cache;

  // Maximum number of call/ret entries, i.e. half of the
  // total number of entry pointers reachable in m_log_head
  const std::size_t m_log_size;

  // History to linearize, every call is matched by a return
  const Entry<S> m_log_head;

  // Invariants:
  //
  // * for every EntryPtr<S> `e` in `m_calls`, `e->is_call()` holds
  // * for every EntryPtr<S> `e`, if `e` in `m_calls`, then `e` is not reachable
  //   from `m_log_head` by following the next pointers.
  Stack<S> m_calls;
1122 1123

#ifdef _LT_TIMEOUT_
1124
  Timeout<std::chrono::steady_clock> m_timeout;
1125 1126
#endif

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
  // An approximation of the workload
  unsigned long m_number_of_iterations;

  // see http://stackoverflow.com/questions/669438/how-to-get-memory-usage-at-run-time-in-c
  //
  // process_mem_usage(double &, double &) - takes two doubles by reference,
  // attempts to read the system-dependent data for a process' virtual memory
  // size && resident set size, && return the results in MiB.
  //
  // On failure, returns 0.0, 0.0
  static void process_mem_usage(double& vm_usage, double& resident_set)
  {
    vm_usage = resident_set = 0.0;
  }

  // Temporarily remove call_entry_ptr and call_entry_ptr->match() from the log

  // \pre: call_entry_ptr->is_call()
  static void lift(const EntryPtr<S> call_entry_ptr)
  {
    const Entry<S>& call = *call_entry_ptr;
    assert(call.is_call());

    Entry<S>& match = *call.match();
    call.prev->next = call.next;
    call.next->prev = call.prev;
    match.prev->next = match.next;

    if (match.next != nullptr)
      match.next->prev = match.prev;
  }

  // Reinsert call_entry_ptr && call_entry_ptr->match() into the log

  // \pre: call_entry_ptr->is_call()
  static void unlift(const EntryPtr<S> call_entry_ptr)
  {
    const Entry<S>& call = *call_entry_ptr;
    assert(call.is_call());

    Entry<S>& match = *call.match();
    assert(match.prev->next == match.next);
    match.prev->next = &match;

    if (match.next != nullptr)
      match.next->prev = &match;

    assert(call.prev->next == call.next);
    call.prev->next = call_entry_ptr;
    call.next->prev = call_entry_ptr;
  }

  void internal_check(Result<S>& result, unsigned& global_linearized_entry_id)
  {
    S s, new_s;
    bool is_entry_linearizable;
    typename Cache::Type cache;
    EntryPtr<S> pop_entry_ptr, entry_ptr{ m_log_head.next };

    double virtual_memory_usage;
    double resident_set_size;

    // fixing the size is !merely an optimization but
    // necessary for checking the equality of bitsets
    Bitset linearized_entries(m_log_size);

    while (m_log_head.next != nullptr)
    {
      process_mem_usage(virtual_memory_usage, resident_set_size);
      result.m_virtual_memory_usage = std::max(result.m_virtual_memory_usage, virtual_memory_usage);
      result.m_resident_set_size = std::max(result.m_resident_set_size, resident_set_size);
1198 1199

#ifdef _LT_TIMEOUT_
1200 1201 1202 1203 1204
      if (m_timeout.is_expired())
      {
        result.m_is_timeout = true;
        break;
      }
1205 1206
#endif

1207
      ++m_number_of_iterations;
1208

1209 1210 1211 1212 1213 1214
      assert(entry_ptr != nullptr);
      if (entry_ptr->is_call())
      {
        assert(!m_calls.is_full());
        assert(entry_ptr->match() != nullptr);
        assert(!linearized_entries.is_set(entry_ptr->entry_id()));
1215

1216 1217
        std::tie(is_entry_linearizable, new_s) =
          entry_ptr->op().apply(s, entry_ptr->match()->op());
1218

1219 1220 1221 1222
        if (is_entry_linearizable && Cache::try_insert(new_s, entry_ptr, cache, linearized_entries))
        {
          // call entry is always matched up with a return entry
          assert(entry_ptr->next != nullptr);
1223

1224 1225 1226 1227 1228
          // provisionally linearize the call entry together with
          // the associated state produced by the new linearization
          m_calls.push(entry_ptr, std::move(s));
          s = std::move(new_s);
          linearized_entries.set(entry_ptr->entry_id());
1229

1230 1231
          // provisionally remove the call && return entry from the history
          lift(entry_ptr);
1232

1233 1234 1235 1236 1237 1238 1239
          // restart from the beginning of the shortened history
          entry_ptr = m_log_head.next;
        }
        else // cannot linearize call entry
        {
          // get the next entry in the unmodified history
          entry_ptr = entry_ptr->next;
1240 1241

#ifdef _LT_DEBUG_
1242
          global_linearized_entry_id = std::max(global_linearized_entry_id, entry_ptr->entry_id());
1243
#endif
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        }
      }
      else // handle "return" entry
      {
        if (m_calls.is_empty())
          break;

        assert(!m_calls.is_empty());

        // revert state change
        std::tie(pop_entry_ptr, s) = m_calls.top();
        assert(pop_entry_ptr != nullptr);
        linearized_entries.reset(pop_entry_ptr->entry_id());

        m_calls.pop();

        // undo the provisional linearization
        unlift(pop_entry_ptr);

        // continue after the entry to which we have just backtracked
        entry_ptr = pop_entry_ptr->next;
      }
    }

    // all call entries linearized?
    result.m_is_linearizable = m_calls.is_full();
    assert(result.m_is_linearizable == (m_log_head.next == nullptr));

    // witness linearization
    std::size_t pos{ 0 };
    result.m_entry_ptrs.resize(m_calls.size());
    for (EntryPtr<S>& entry_ptr : result.m_entry_ptrs)
      entry_ptr = m_calls.entry_ptr(pos++);
  }

 public:
  LinearizabilityTester(LogInfo<S> log_info)
    : m_log_size{ log_info.number_of_entries() >> 1 },
    m_log_head{ log_info.log_head_ptr() },
    m_calls{ m_log_size },
1284
#ifdef _LT_TIMEOUT_
1285
    m_timeout{},
1286
#endif
1287
    m_number_of_iterations{} {}
1288 1289

#ifdef _LT_TIMEOUT_
1290 1291 1292 1293 1294 1295 1296
  LinearizabilityTester(LogInfo<S> log_info,
    std::chrono::steady_clock::duration max_duration)
    : m_log_size{ log_info.number_of_entries() >> 1 },
    m_log_head{ log_info.log_head_ptr() },
    m_calls{ m_log_size },
    m_timeout{ max_duration },
    m_number_of_iterations{} {}
1297 1298
#endif

1299 1300 1301 1302 1303
  /// A rough approximation of the workload
  unsigned long number_of_iterations() const noexcept
  {
    return m_number_of_iterations;
  }
1304

1305
  /// Is history linearizable?
1306

1307 1308 1309 1310 1311 1312
  /// Throws an exception on timeout
  bool check()
  {
    Result<S> result;
    unsigned disregard_cutoff_entry_id;
    internal_check(result, disregard_cutoff_entry_id);
1313

1314 1315
    if (result.is_timeout())
      throw std::runtime_error("Timeout!");
1316

1317 1318
    return result.is_linearizable();
  }
1319

1320 1321 1322
  void check(Result<S>& result)
  {
    result.reset();
1323 1324

#ifdef _LT_DEBUG_
1325 1326
    internal_check(result, result.m_cutoff_entry_id);
    result.m_log_head_ptr = m_log_head.next;
1327
#else
1328 1329
    unsigned disregard_cutoff_entry_id;
    internal_check(result, disregard_cutoff_entry_id);
1330
#endif
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
  }
};

template<class S, class Duration>
void compositional_check(Log<S>& log, Result<S> &result,
  unsigned number_of_partitions, Duration max_duration)
{
  Slicer<S> slicer{ log.info(), number_of_partitions };
  for (unsigned partition = 0; partition < slicer.number_of_partitions; ++partition)
  {
    LinearizabilityTester<S> tester{ slicer.sublog_info(partition), max_duration };
    tester.check(result);
    if (!(result.is_timeout() || result.is_linearizable()))
      break;
  }
}

/// RAII class to ensure a thread becomes unjoinable on all paths
class Thread
{
 private:
  std::thread m_thread;

 public:
  Thread()
    : m_thread{} {}

  Thread(std::thread&& thread)
    : m_thread(std::move(thread)) {}

  template<typename F, typename... Args>
  Thread(F&& f, Args&&... args)
    : m_thread(std::forward<F>(f), std::forward<Args>(args)...) {}

  ~Thread()
  {
    if (m_thread.joinable())
      m_thread.join();
  }

  /// \pre: joinable()
  /// \post: not joinable()

  /// Throws std::system_error if an error occurs.
  void join()
  {
    m_thread.join();
  }

  bool joinable() const noexcept
  {
    return m_thread.joinable();
  }

  Thread& operator=(Thread&& thread)
  {
    m_thread = std::move(thread.m_thread);
    return *this;
  }
};

/// Partition history into sub-histories

/// A slicer partitions the history into independent sub-histories.
/// Our partitioning scheme hinges on Theorem 3.6.1 in "The Art of
/// Multiprocessor Programming" (Revised Ed.) by Herlihy && Shavit.
///
/// Typically only associative concurrent abstract data types (ADTs)
/// such as sets && hash tables are suitable for this partitioning
/// scheme. && !all operations on such ADTs are always supported.
/// For example, the partitioning scheme is incompatible with 0-arg
/// operations such as "empty?" on sets. But it is very effective if
/// we want to only check linearizability of say "insert", "remove"
/// && "contains".
///
/// S - sequential data type
template<class S>
class Slicer
{
 private:
  typedef std::vector<LogInfo<S>> Sublogs;

  static void slice(const Entry<S>& log_head, Sublogs& sublogs)
  {
    const typename Sublogs::size_type n = sublogs.size();

    EntryPtr<S> entry_ptr{ log_head.next }, next_entry_ptr;
    std::vector<EntryPtr<S>> last_entry_ptrs(sublogs.size());
    std::vector<unsigned> entry_ids(sublogs.size());
    typename Sublogs::size_type i;
    unsigned new_entry_id;

    while (entry_ptr != nullptr)
    {
      i = entry_ptr->op().partition() % n;

      LogInfo<S>& log_info = sublogs[i];
      EntryPtr<S>& last_entry_ptr = last_entry_ptrs[i];

      if (log_info.log_head_ptr() == nullptr)
      {
        // initialize sub-log
        assert(entry_ptr->is_call());
        assert(last_entry_ptr == nullptr);

        log_info.m_log_head_ptr = entry_ptr;
        log_info.m_number_of_entries = 1U;
      }
      else
      {
        // size of the sub-log increases
        ++log_info.m_number_of_entries;

        assert(last_entry_ptr != nullptr);
        last_entry_ptr->next = entry_ptr;
      }

      if (entry_ptr->is_call())
      {
        new_entry_id = entry_ids[i]++;
        entry_ptr->set_entry_id(new_entry_id);
        entry_ptr->match()->set_entry_id(new_entry_id);
      }

      next_entry_ptr = entry_ptr->next;
      entry_ptr->prev = last_entry_ptr;
      entry_ptr->next = nullptr;
      last_entry_ptr = entry_ptr;
      entry_ptr = next_entry_ptr;
    }
  }

  Sublogs m_sublogs;
  unsigned m_current_partition;

 public:
  const Entry<S> log_head;
  const unsigned number_of_partitions;

  Slicer(LogInfo<S> log_info, unsigned _number_of_partitions)
    : m_sublogs(_number_of_partitions),
    m_current_partition{ 0U },
    log_head{ log_info.log_head_ptr() },
    number_of_partitions{ _number_of_partitions }
  {
    slice(log_head, m_sublogs);
  }

  const LogInfo<S>& sublog_info(unsigned partition) const
  {
    return m_sublogs[partition];
  }

  const LogInfo<S>& next_sublog_info()
  {
    static LogInfo<S> s_empty_log;

    unsigned partition = m_current_partition;
    ++m_current_partition;

    if (partition < number_of_partitions)
      return m_sublogs[partition];

    return s_empty_log;
  }
};

/// S - sequential data type
template<class S>
class ConcurrentLog
{
 private:
  typedef std::vector<Entry<S>> Entries;
  typedef typename Entries::size_type Size;

  Entries m_entries;
  std::atomic<Size> m_index;

  static void link(EntryPtr<S> last_entry_ptr, Entry<S>& entry)
  {
    if (last_entry_ptr != nullptr)
      last_entry_ptr->next = &entry;

    entry.prev = last_entry_ptr;
  }

 public:
  ConcurrentLog(Size capacity)
    : m_entries(capacity),
    m_index{ 0U } {}

  /// \remark thread-safe

  /// \pre: enough capacity
  EntryPtr<S> push_back(OpPtr<S>&& op_ptr)
  {
    // we use the relaxed memory || der tag because we
    // do !need to read any other memory locations
    Size index = m_index.fetch_add(1U, std::memory_order_relaxed);

    assert(index < m_entries.size());

    // There is no data race, see [container.requirements.dataraces]
    // in Section 23.2.2, paragraph 2, p. 734 in the C++11 language
    // specification. Since the index was incremented atomically,
    // each thread accesses a different element in the vector.
    Entry<S>& entry = m_entries[index];
    entry.set_op(std::move(op_ptr));
    entry.set_thread_id(std::this_thread::get_id());

    return &entry;
  }

  /// \remark thread-safe

  /// \pre: enough capacity
  /// \post: call_entry_ptr->is_call()
  EntryPtr<S> push_back(EntryPtr<S> call_entry_ptr, OpPtr<S>&& op_ptr)
  {
    EntryPtr<S> entry_ptr = push_back(std::move(op_ptr));
    call_entry_ptr->set_match(entry_ptr);
    assert(call_entry_ptr->is_call());

    return entry_ptr;
  }

  /// \warning !thread-safe
  EntryPtr<S> log_head_ptr()
  {
    if (m_entries.front().next == nullptr)
    {
      unsigned entry_id{ 0U };
      Size index{ 0U };

      EntryPtr<S> last_entry_ptr{ nullptr };
      for (Entry<S>& entry : m_entries)
      {
        if (index == m_index)
          break;

        ++index;

        if (entry.is_call())
        {
          entry.set_entry_id(entry_id);
          entry.match()->set_entry_id(entry_id);

          ++entry_id;
        }

        link(last_entry_ptr, entry);
        last_entry_ptr = &entry;
      }
    }

    return &m_entries.front();
  }

  /// Total number of call entries plus return entries.

  /// Returns even number since every call is paired with a return
  ///
  /// \warning !thread-safe
  std::size_t number_of_entries() const noexcept
  {
    return m_index.load();
  }

  /// \warning !thread-safe
  LogInfo<S> info()
  {
    return{ log_head_ptr(), number_of_entries() };
  }
};

/************* Models for sequential abstract data types *************/

class FlexibleBitset
{
 public:
  typedef Bitset::Pos Pos;

 private:
  Bitset m_bitset;

  void allocate_blocks_if_neccessary(Pos pos) noexcept
  {
    if (pos < Bitset::s_bits_per_block)
      return;
    
    assert(0U < pos);
    Bitset::BlockIndex new_size{ Bitset::blocks_size(pos) };
    if (m_bitset.m_blocks.size() < new_size) {
      m_bitset.m_blocks.resize(new_size);
    }
  }

 public:
  FlexibleBitset()
    : m_bitset{ 1U } {}

  FlexibleBitset(Pos max_pos)
    : m_bitset{ max_pos } {}

  bool is_empty() const noexcept
  {
    return m_bitset.is_empty();
  }

  bool set(Pos pos)
  {
    allocate_blocks_if_neccessary(pos);
    return m_bitset.set(pos);
  }

  bool is_set(Pos pos) const
  {
    return m_bitset.is_set(pos);
  }

  bool reset(Pos pos)
  {
    allocate_blocks_if_neccessary(pos);
    return m_bitset.reset(pos);
  }

  /// Same size && bits?
  bool operator==(const FlexibleBitset& other) const noexcept
  {
    return m_bitset == other.m_bitset;
  }

  bool operator!=(const FlexibleBitset& other) const noexcept
  {
    return m_bitset != other.m_bitset;
  }

  std::size_t hash_code() const noexcept
  {
    return m_bitset.m_hash;
  }
};

namespace state
{
namespace internal
{
template<class S, class Ret>
struct RetOp :  public Op<S>
{
  typedef RetOp<S, Ret> Base;

  const Ret ret;

  RetOp(Ret r)
    : Op<S>(), ret{ r } {}

  RetOp(Ret r, unsigned partition)
    : Op<S>(partition), ret{ r } {}
1690 1691

#ifdef _LT_DEBUG_
1692 1693 1694 1695
  std::ostream& print(std::ostream& os) const override
  {
    return os << "ret: " << ret;
  }
1696
#endif
1697
};
1698

1699 1700 1701 1702
template<class S, const char* const op_name>
struct ZeroArgOp :  public Op<S>
{
  typedef ZeroArgOp<S, op_name> Base;
1703

1704 1705
  ZeroArgOp()
    : Op<S>() {}
1706 1707

#ifdef _LT_DEBUG_
1708 1709 1710 1711
  std::ostream& print(std::ostream& os) const override
  {
    return os << op_name << "()";
  }
1712
#endif
1713
};
1714

1715 1716 1717 1718
template<class S, class Value, const char* const op_name>
struct ArgOp :  public Op<S>
{
  typedef ArgOp<S, Value, op_name> Base;
1719

1720
  const Value value;
1721

1722 1723
  ArgOp(Value v)
    : Op<S>(v), value{ v } {}
1724

1725 1726
  ArgOp(bool is_partitionable, Value v)
    : Op<S>(is_partitionable, v), value{ v } {}
1727 1728

#ifdef _LT_DEBUG_
1729 1730 1731 1732
  std::ostream& print(std::ostream& os) const override
  {
    return os << op_name << "(" << std::to_string(value) << ")";
  }
1733
#endif
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
};
}

/// Byte read-write register with CAS
class Atomic
{
 public:
  typedef signed char Value;

 private:
  static constexpr char s_read_op_name[5] = "read";
  static constexpr char s_write_op_name[6] = "write";

  struct ReadRetOp :  public Op<Atomic>
  {
   private:
    const bool m_is_pending;
    const Value m_value;

   public:
    ReadRetOp(bool is_pending, Value value)
      : Op<Atomic>(),
      m_is_pending(is_pending),
      m_value{ value } {}

    bool is_pending() const noexcept
    {
      return m_is_pending;
    }

    /// \pre: !is_pending()
    Value value() const
    {
      assert(!m_is_pending);
      return m_value;
    }
1770 1771

#ifdef _LT_DEBUG_
1772 1773 1774 1775
    std::ostream& print(std::ostream& os) const override
    {
      if (m_is_pending)
        return os << "read() : pending";
1776

1777 1778
      return os << "read() : " << std::to_string(m_value);
    }
1779
#endif
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
  };

  struct ReadCallOp :  public internal::ZeroArgOp<Atomic, s_read_op_name>
  {
    ReadCallOp() : Base() {}

    std::pair<bool, Atomic> internal_apply(const Atomic& atomic, const Op<Atomic>& op) override
    {
      const ReadRetOp& read_ret = dynamic_cast<const ReadRetOp&>(op);

      if (read_ret.is_pending())
        return{ true, atomic };

      return{ atomic.get() == read_ret.value(), atomic };
    }
  };

  struct CASRetOp :  public Op<Atomic>
  {
   private:
    // 0: pending, 1: failed, 2: ok
    const unsigned m_status;

   public:
    CASRetOp(unsigned status)
      : Op<Atomic>(),
      m_status(status) {}

    bool is_pending() const noexcept
    {
      return m_status == 0U;
    }

    /// \pre: !is_pending()
    bool is_ok() const
    {
      assert(0U < m_status);
      return m_status == 2U;
    }
1819 1820

#ifdef _LT_DEBUG_
1821 1822 1823
    std::ostream& print(std::ostream& os) const override
    {
      os << "cas() : ";
1824

1825 1826
      if (is_pending())
        return os << "pending";
1827

1828 1829
      if (is_ok())
        return os << "succeeded";
1830

1831 1832
      return os << "failed";
    }
1833
#endif
1834
  };
1835

1836 1837 1838
  struct CASCallOp :  public Op<Atomic>
  {
    const Value current_value, new_value;
1839

1840 1841 1842 1843
    CASCallOp(Value current_v, Value new_v)
      : Op<Atomic>(),
      current_value{ current_v },
      new_value{ new_v } {}
1844 1845

#ifdef _LT_DEBUG_
1846 1847 1848 1849
    std::ostream& print(std::ostream& os) const override
    {
      return os << "cas(" << std::to_string(current_value) << ", " << std::to_string(new_value) << ")";
    }
1850 1851
#endif

1852 1853 1854
    std::pair<bool, Atomic> internal_apply(const Atomic& atomic, const Op<Atomic>& op) override
    {
      const CASRetOp& cas_ret = dynamic_cast<const CASRetOp&>(op);
1855

1856 1857 1858 1859
      if (cas_ret.is_pending())
      {
        if (atomic.get() == current_value)
          return{ true, atomic.set(new_value) };
1860

1861 1862
        return{ true, atomic };
      }
1863

1864 1865
      if (atomic.get() == current_value)
        return{ cas_ret.is_ok(), atomic.set(new_value) };
1866

1867 1868 1869
      return{ !cas_ret.is_ok(), atomic };
    }
  };
1870

1871 1872 1873
  struct WriteRetOp :  public Op<Atomic>
  {
    const bool is_pending;
1874

1875 1876 1877
    WriteRetOp(bool pending)
      : Op<Atomic>(),
      is_pending(pending) {}
1878 1879

#ifdef _LT_DEBUG_
1880 1881 1882 1883
    std::ostream& print(std::ostream& os) const override
    {
      if (is_pending)
        return os << "write() : pending";
1884

1885 1886
      return os << "write() : succeeded";
    }
1887
#endif
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
  };

  struct WriteCallOp :  public internal::ArgOp<Atomic, Value, s_write_op_name>
  {
    typedef internal::ArgOp<Atomic, Value, s_write_op_name> Base;

    WriteCallOp(Value new_value)
      : Base(false, new_value) {}

    std::pair<bool, Atomic> internal_apply(const Atomic& atomic, const Op<Atomic>& op) override
    {
      const WriteRetOp& write_ret = dynamic_cast<const WriteRetOp&>(op);

      // we don't need to check write_ret.is_pending because if the
      // write is pending then it could be still linearized last
      return{ true, atomic.set(Base::value) };
    }
  };

  Value m_value;

  Atomic(Value value) : m_value{ value } {}

 public:
  typedef std::unique_ptr<Op<Atomic>> AtomicOpPtr;

  static AtomicOpPtr make_read_call()
  {
    return make_unique<ReadCallOp>();
  }

  static AtomicOpPtr make_read_ret(Value v)
  {
    return make_unique<ReadRetOp>(false, v);
  }

  static AtomicOpPtr make_read_pending()
  {
    return make_unique<ReadRetOp>(true, '\0');
  }

  static AtomicOpPtr make_write_call(Value v)
  {
    return make_unique<WriteCallOp>(v);
  }

  static AtomicOpPtr make_write_ret()
  {
    return make_unique<WriteRetOp>(false);
  }

  static AtomicOpPtr make_write_pending()
  {
    return make_unique<WriteRetOp>(true);
  }

  static AtomicOpPtr make_cas_call(Value curr_value, Value new_value)
  {
    return make_unique<CASCallOp>(curr_value, new_value);
  }

  static AtomicOpPtr make_cas_ret(bool ok)
  {
    return make_unique<CASRetOp>(1U + ok);
  }

  static AtomicOpPtr make_cas_pending()
  {
    return make_unique<CASRetOp>(0U);
  }

  /// Initially, register is negative
  Atomic() : m_value{ -1 } {}

  Value get() const noexcept
  {
    return m_value;
  }

  Atomic set(Value v) const noexcept
  {
    return{ v };
  }

  bool operator==(const Atomic& atomic) const
  {
    return m_value == atomic.m_value;
  }

  bool operator!=(const Atomic& atomic) const
  {
    return m_value != atomic.m_value;
  }
};

constexpr char Atomic::s_read_op_name[];
constexpr char Atomic::s_write_op_name[];

template<>
struct Hash<Atomic>
{
  std::size_t operator()(const Atomic& atomic) const noexcept
  {
    return atomic.get() * 193U;
  }
};
}
1995 1996

}
1997
#endif
1998 1999 2000