queue_test-inl.h 8.55 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright (c) 2014, Siemens AG. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef CONTAINERS_CPP_TEST_QUEUE_TEST_INL_H_
#define CONTAINERS_CPP_TEST_QUEUE_TEST_INL_H_

#include <algorithm>
#include <vector>

33 34
#include <embb/base/internal/config.h>

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
namespace embb {
namespace containers {
namespace test {
template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::QueueTest() :
n_threads(static_cast<int>
  (partest::TestSuite::GetDefaultNumThreads())),
  n_iterations(200),
  n_queue_elements_per_thread(100),
  n_queue_elements(n_queue_elements_per_thread*n_threads),
  queueSize(0) {
  CreateUnit("QueueTestSingleThreadEnqueueDequeue").
  Pre(&QueueTest::QueueTestSingleThreadEnqueueDequeue_Pre, this).
  Add(&QueueTest::QueueTestSingleThreadEnqueueDequeue_ThreadMethod, this).
  Post(&QueueTest::QueueTestSingleThreadEnqueueDequeue_Post, this);

  CreateUnit("QueueTestTwoThreadsSingleProducerSingleConsumer").
  Pre(&QueueTest::QueueTestSingleProducedSingleConsumer_Pre, this).
  Add(&QueueTest::QueueTestSingleProducedSingleConsumer_ThreadMethod,
  this,
  2,
  TOTAL_PRODUCE_CONSUME_COUNT).
  Post(&QueueTest::QueueTestSingleProducedSingleConsumer_Post, this);

59
#ifdef EMBB_COMPILER_MSVC
60 61 62 63 64
#pragma warning(push)
#pragma warning(disable:4127)
#endif
  if (MultipleProducers == true &&
    MultipleConsumers == true) {
65
#ifdef EMBB_COMPILER_MSVC
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
#pragma warning(pop)
#endif
    CreateUnit("QueueTestMultipleThreadsMultipleProducerMultipleConsumer").
    Pre(&QueueTest::QueueTestMultipleProducerMultipleConsumer_Pre, this).
    Add(&QueueTest::QueueTestMultipleProducerMultipleConsumer_ThreadMethod,
    this,
    static_cast<size_t>(n_threads),
    static_cast<size_t>(n_iterations)).
    Post(&QueueTest::QueueTestMultipleProducerMultipleConsumer_Post, this);
  }
}

template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestMultipleProducerMultipleConsumer_Pre() {
  embb_internal_thread_index_reset();
  queue = new Queue_t(static_cast<size_t>(n_queue_elements));

  thread_local_vectors =
    new std::vector<int>[static_cast<unsigned int>(n_threads)];

  for (int i = 0; i != n_threads; ++i) {
    int offset = n_queue_elements_per_thread * 2;

    for (int i2 = 0; i2 != n_queue_elements_per_thread; ++i2) {
      int push_element = i2 + (offset*i);
      thread_local_vectors[i].push_back(push_element);
      expected_queue_elements.push_back(push_element);
    }
  }
}

template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestMultipleProducerMultipleConsumer_Post() {
  std::vector<int> produced;
  for (int i = 0; i != n_threads; ++i) {
    std::vector<int>& loc_elements = thread_local_vectors[i];
    for (std::vector<int>::iterator it = loc_elements.begin();
      it != loc_elements.end();
      ++it) {
      produced.push_back(*it);
    }
  }

  PT_ASSERT(produced.size() == expected_queue_elements.size());

  std::sort(expected_queue_elements.begin(), expected_queue_elements.end());
  std::sort(produced.begin(), produced.end());

  for (unsigned int i = 0;
    i != static_cast<unsigned int>(produced.size()); ++i) {
    PT_ASSERT(expected_queue_elements[i] == produced[i]);
  }

  delete[] thread_local_vectors;
  delete queue;
}

template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestMultipleProducerMultipleConsumer_ThreadMethod() {
  unsigned int thread_index;
  int return_val = embb_internal_thread_index(&thread_index);

  PT_ASSERT(EMBB_SUCCESS == return_val);

  std::vector<int>& my_elements = thread_local_vectors[thread_index];

  for (std::vector<int>::iterator it = my_elements.begin();
    it != my_elements.end();
    ++it) {
    int enq = *it;
    bool success = queue->TryEnqueue(enq);
    PT_ASSERT(success == true);
  }

  my_elements.clear();

  for (int i = 0; i != n_queue_elements_per_thread; ++i) {
    int dequ;
    bool success = queue->TryDequeue(dequ);
    PT_ASSERT(success == true);
    my_elements.push_back(dequ);
  }
}

template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestSingleProducedSingleConsumer_Pre() {
  embb_internal_thread_index_reset();

  queue = new Queue_t(QUEUE_SIZE);
  thread_selector_producer = -1;
  produce_count = 0;
  consume_count = 0;
  consumed_elements.clear();
  produced_elements.clear();
}

template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestSingleProducedSingleConsumer_Post() {
  embb_atomic_memory_barrier();
  ::std::sort(consumed_elements.begin(), consumed_elements.end());
  ::std::sort(produced_elements.begin(), produced_elements.end());

  PT_ASSERT(consumed_elements.size() == produced_elements.size());

  for (unsigned int i = 0;
    i != static_cast<unsigned int>(consumed_elements.size()); i++) {
    PT_ASSERT(consumed_elements[i] == produced_elements[i]);
  }

  delete queue;
}

template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestSingleProducedSingleConsumer_ThreadMethod() {
  unsigned int thread_index;
  int return_val = embb_internal_thread_index(&thread_index);
  PT_ASSERT(return_val == EMBB_SUCCESS);

  if (thread_selector_producer == -1) {
    int expected = -1;
    thread_selector_producer.CompareAndSwap(expected,
      static_cast<int>(thread_index));
    while (thread_selector_producer == -1) {}
  }

  // we are the producer
  if (static_cast<unsigned int>(thread_selector_producer.Load()) ==
    thread_index) {
    while (produce_count >= QUEUE_SIZE) {}

    int random_var = rand() % 10000;
    bool success = queue->TryEnqueue(random_var);
    PT_ASSERT(success == true);
    produce_count++;
    produced_elements.push_back(random_var);
  // we are the consumer
  } else {
    while (consume_count < TOTAL_PRODUCE_CONSUME_COUNT) {
      consume_count++;

      while (produce_count == 0) {}

      int consumed;
      bool success = queue->TryDequeue(consumed);
      PT_ASSERT(success == true);
      produce_count--;
      consumed_elements.push_back(consumed);
    }
  }
}

template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestSingleThreadEnqueueDequeue_ThreadMethod() {
  for (int i = 0; i != QUEUE_SIZE; ++i) {
    bool success = queue->TryEnqueue(i * 133);
    PT_ASSERT(success == true);
  }
  for (int i = 0; i != QUEUE_SIZE; ++i) {
    int dequ = -1;
    bool success = queue->TryDequeue(dequ);
    PT_ASSERT(success == true);
    PT_ASSERT(dequ == i * 133);
  }
}

template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestSingleThreadEnqueueDequeue_Pre() {
  queue = new Queue_t(QUEUE_SIZE);
}
template<typename Queue_t, bool MultipleProducers, bool MultipleConsumers>
void QueueTest<Queue_t, MultipleProducers, MultipleConsumers>::
QueueTestSingleThreadEnqueueDequeue_Post() {
  delete queue;
}
} // namespace test
} // namespace containers
} // namespace embb

#endif  // CONTAINERS_CPP_TEST_QUEUE_TEST_INL_H_