process.h 5.67 KB
Newer Older
1
/*
Marcus Winter committed
2
 * Copyright (c) 2014-2016, Siemens AG. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef EMBB_DATAFLOW_INTERNAL_PROCESS_H_
#define EMBB_DATAFLOW_INTERNAL_PROCESS_H_

#include <embb/dataflow/internal/node.h>
#include <embb/dataflow/internal/inputs.h>
#include <embb/dataflow/internal/outputs.h>
#include <embb/dataflow/internal/process_executor.h>
#include <embb/dataflow/internal/action.h>

namespace embb {
namespace dataflow {
namespace internal {

40
template <bool Serial, class INPUTS, class OUTPUTS> class Process;
41 42

template <
43
  bool Serial,
44 45
  typename I1, typename I2, typename I3, typename I4, typename I5,
  typename O1, typename O2, typename O3, typename O4, typename O5>
46 47
class Process< Serial, Inputs<I1, I2, I3, I4, I5>,
  Outputs<O1, O2, O3, O4, O5> >
48 49 50
  : public Node
  , public ClockListener {
 public:
51 52
  typedef Inputs<I1, I2, I3, I4, I5> InputsType;
  typedef Outputs<O1, O2, O3, O4, O5> OutputsType;
53 54 55
  typedef ProcessExecutor< InputsType, OutputsType > ExecutorType;
  typedef typename ExecutorType::FunctionType FunctionType;

56 57
  Process(Scheduler * sched, FunctionType function)
    : inputs_()
58
    , executor_(function)
59
    , action_(NULL)
60
    , slices_(0) {
61
    next_clock_ = 0;
62 63 64 65 66 67 68
    queued_clock_ = 0;
    bool ordered = Serial;
    if (ordered) {
      queue_id_ = GetNextProcessID();
    } else {
      queue_id_ = 0;
    }
69
    inputs_.SetListener(this);
70
    SetScheduler(sched);
71 72
  }

73 74 75 76 77 78
  ~Process() {
    if (NULL != action_) {
      embb::base::Allocation::Free(action_);
    }
  }

79 80 81 82 83 84 85 86 87 88 89 90
  virtual bool HasInputs() const {
    return inputs_.Size() > 0;
  }

  virtual bool HasOutputs() const {
    return outputs_.Size() > 0;
  }

  virtual void Run(int clock) {
    executor_.Execute(clock, inputs_, outputs_);
  }

91 92
  virtual bool IsFullyConnected() {
    return inputs_.IsFullyConnected() && outputs_.IsFullyConnected();
93 94
  }

95 96 97 98
  virtual bool IsSequential() {
    return Serial;
  }

99 100 101 102
  virtual bool HasCycle() {
    return outputs_.HasCycle(this);
  }

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  InputsType & GetInputs() {
    return inputs_;
  }

  template <int Index>
  typename TypeAt<typename InputsType::Types, Index>::Result & GetInput() {
    return inputs_.template Get<Index>();
  }

  OutputsType & GetOutputs() {
    return outputs_;
  }

  template <int Index>
  typename TypeAt<typename OutputsType::Types, Index>::Result & GetOutput() {
    return outputs_.template Get<Index>();
  }

121
  template <typename T>
122
  T & operator >> (T & target) {
123
    GetOutput<0>() >> target.template GetInput<0>();
124
    return target;
125 126
  }

127
  virtual void OnClock(int clock) {
128
    assert(inputs_.AreAtClock(clock));
129 130 131

    bool ordered = Serial;
    if (ordered) {
132 133 134
      bool retry = true;
      while (retry) {
        int clk = next_clock_;
135
        int clk_end = clk + slices_;
136 137 138 139 140 141 142 143 144
        int clk_res = clk;
        for (int ii = clk; ii < clk_end; ii++) {
          if (!inputs_.AreAtClock(ii)) {
            break;
          }
          clk_res++;
        }
        if (clk_res > clk) {
          if (next_clock_.CompareAndSwap(clk, clk_res)) {
145
            while (queued_clock_.Load() < clk) continue;
146
            for (int ii = clk; ii < clk_res; ii++) {
147
              const int idx = ii % slices_;
148 149 150 151 152 153 154 155
              action_[idx] = Action(this, ii);
              sched_->Enqueue(queue_id_, action_[idx]);
            }
            queued_clock_.Store(clk_res);
            retry = false;
          }
        } else {
          retry = false;
156 157 158
        }
      }
    } else {
159
      const int idx = clock % slices_;
160
      action_[idx] = Action(this, clock);
161
      sched_->Start(action_[idx]);
162
    }
163 164
  }

165 166 167 168 169 170 171 172 173
  virtual bool OnHasCycle(ClockListener * node) {
    ClockListener * this_node = this;
    if (this_node == node) {
      return true;
    } else {
      return outputs_.HasCycle(node);
    }
  }

174 175 176 177
 private:
  InputsType inputs_;
  OutputsType outputs_;
  ExecutorType executor_;
178
  Action * action_;
179 180 181
  embb::base::Atomic<int> next_clock_;
  embb::base::Atomic<int> queued_clock_;
  int queue_id_;
182
  int slices_;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

  virtual void SetSlices(int slices) {
    if (0 < slices_) {
      embb::base::Allocation::Free(action_);
      action_ = NULL;
    }
    slices_ = slices;
    inputs_.SetSlices(slices);
    if (0 < slices_) {
      action_ = reinterpret_cast<Action*>(
        embb::base::Allocation::Allocate(
          sizeof(Action)*slices_));
      for (int ii = 0; ii < slices_; ii++) {
        action_[ii] = Action();
      }
    }
  }
200 201 202 203 204 205 206
};

} // namespace internal
} // namespace dataflow
} // namespace embb

#endif // EMBB_DATAFLOW_INTERNAL_PROCESS_H_