
First-order masked ARMv7-M implementations

of GIFT-COFB AEAD scheme

Alexandre Adomnicai

April 30, 2022

Abstract

This document briefly describes first-oder masked implementations of GIFT-
COFB on ARMv7-M architectures which have been developped within the con-
text of the NIST LWC standardization project.

1 Context

In 2018, the National Institute of Standards and Technology (NIST) initiated a pro-
cess that started in 2018, with the goal of selecting the future Authenticated Encryp-
tion with Associated Data (AEAD) standard(s) for constrained environments [?].
AEAD algorithms ensure confidentiality, integrity, and authenticity of data in a sin-
gle primitive. An important selection criterion, on top of security and performance, is
the resilience against side-channel attacks since embedded devices are typical targets
for such attacks. In order to assist the NIST in evaluating the LWC finalists in this
regard, the Cryptographic Engineering Research Group from George Mason Univer-
sity issued a call for protected software implementations of NIST LWC finalists1. The
submissions have to follow a specific API so that it facilitates side-channel evaluations
from the security labs involved in the process. The implementations described in this
document were developped in this context and focus on GIFT-COFB [BCI+21]2, one
of the 10 NIST LWC finalists, which is based on the GIFT-128 block cipher [BPP+17].

2 Implementation details

The first-order secure implementations presented in this document are based on a
previous work employing an advanced bitslicing technique named fixslicing [ANP20].
Therefore, all the code consists of bitwise operations only, which eases the integration
of Boolean masking. Non-linear operations (i.e. AND and OR gates) are computed
without additional randomness using the techniques detailed in Algorithms 1 and 2.

Algorithm 1: First-order Boolean masked AND gate without additional ran-
domness from [BDCU17]

Input: (x1, x2) s.t. x = x1 ⊕ x2 ; (y1, y2) s.t. y = y1 ⊕ y2
Output: (z1, z2) s.t. z = x ∧ y = z1 ⊕ z2

1 z1 = (x1 ∧ y1)⊕ (x1 ∨ ¬y2)
2 z2 = (x2 ∨ y1)⊕ (x2 ∨ ¬y2)
3 return (z1, z2)

1https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_

Implementations.pdf
2https://www.isical.ac.in/~lightweight/COFB/

1

https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf
https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf
https://www.isical.ac.in/~lightweight/COFB/


Algorithm 2: First-order Boolean masked OR gate without additional ran-
domness from [BDCU17]

Input: (x1, x2) s.t. x = x1 ⊕ x2 ; (y1, y2) s.t. y = y1 ⊕ y2
Output: (z1, z2) s.t. z = x ∨ y = z1 ⊕ z2

1 z1 = (x1 ∧ y1)⊕ (x1 ∨ y2)
2 z2 = (x2 ∧ y1)⊕ (x2 ∧ y2)
3 return (z1, z2)

The key is the only input which is split into 2 shares by the generate shares encrypt

and generate shares decrypt functions. The key schedule is computed on both
shares, independently, within a single assembly function call. At the GIFT-128 level,
the internal state is also split into 2 shares, where the initial shares are initialized to
zero (i.e. the input block is not masked).

Note that no hiding countermeasures have been integrated to these implementations
so far.

3 Results of the preliminary security evaluation

No premilinary security evaluation has been undertaken.

4 Usage example

1 #include <crypto_aead_shared.h>

2 ...

3 unsigned long long mlen = 16; // can be set to any value

4 unsigned long long adlen = 16; // can be set to any value

5 unsigned long long clen = mlen + CRYPTO_ABYTES;

6
7 unsigned char k[CRYPTO_KEYBYTES];

8 unsigned char m[mlen];

9 unsigned char c[clen];

10 unsigned char ad[adlen];

11 unsigned char npub[CRYPTO_NPUBBYTES];

12
13 mask_m_uint32_t ms[mlen/sizeof(uint32_t)+1]; // +1 in case mlen % 4 != 0

14 mask_c_uint32_t cs[clen/sizeof(uint32_t)+1]; // +1 in case mlen % 4 != 0

15 mask_ad_uint32_t ads[adlen/sizeof(uint32_t)+1]; // +1 in case mlen % 4 != 0

16 mask_key_uint32_t ks[CRYPTO_KEYBYTES/sizeof(uint32_t)];

17 mask_npub_uint32_t npubs[CRYPTO_NPUBBYTES/sizeof(uint32_t)];

18
19 /* encryption process */

20 generate_shares_encrypt(m, ms, mlen, ad, ads, adlen, npub, npubs, k, ks);

21 crypto_aead_encrypt_shared(cs, &clen, ms, mlen, ads, adlen, npubs, ks);

22 combine_shares_encrypt(cs, c, clen); // unmasked ciphertext is now stored in c

23
24 /* decryption process */

25 generate_shares_decrypt(c, cs, clen, ad, ads, adlen, npub, npubs, k, ks);

26 crypto_aead_decrypt_shared(ms, &mlen, cs, clen, ads, adlen, npubs, ks);

27 combine_shares_decrypt(ms, m, mlen); // unmasked plaintext is now stored in m

Listing 1: Usage example of the proposed API in the call for protected software
implementations of NIST LWC finalists.

2

https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf
https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf


References

[ANP20] Alexandre Adomnicai, Zakaria Najm, and Thomas Peyrin. Fixslicing: A
new GIFT representation fast constant-time implementations of GIFT and
GIFT-COFB on ARM cortex-m. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2020(3):402–427, 2020.

[BCI+21] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke
Todo. GIFT-COFB v1.1. Submission to the NIST Lightweight Cryptog-
raphy project, 2021.

[BDCU17] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. Opti-
mal First-Order Boolean Masking for Embedded IoT Devices. In Thomas
Eisenbarth and Yannick Teglia, editors, Smart Card Research and Ad-
vanced Applications - 16th International Conference, CARDIS 2017, vol-
ume 10728 of Lecture Notes in Computer Science, pages 22–41. Springer,
2017.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Cryptographic Hard-
ware and Embedded Systems - CHES 2017 - 19th International Confer-
ence, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529
of Lecture Notes in Computer Science, pages 321–345. Springer, 2017.

3


	Context
	Implementation details
	Results of the preliminary security evaluation
	Usage example

