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Abstract

This document briefly describes first-oder masked implementations of GIFT-
COFB on ARMv7-M architectures which have been developped within the con-
text of the NIST LWC standardization project.

1 Context

In 2018, the National Institute of Standards and Technology (NIST) initiated a pro-
cess that started in 2018, with the goal of selecting the future Authenticated Encryp-
tion with Associated Data (AEAD) standard(s) for constrained environments [?].
AEAD algorithms ensure confidentiality, integrity, and authenticity of data in a sin-
gle primitive. An important selection criterion, on top of security and performance, is
the resilience against side-channel attacks since embedded devices are typical targets
for such attacks. In order to assist the NIST in evaluating the LWC finalists in this
regard, the Cryptographic Engineering Research Group from George Mason Univer-
sity issued a call for protected software implementations of NIST LWC finalists1. The
submissions have to follow a specific API so that it facilitates side-channel evaluations
from the security labs involved in the process. The implementations described in this
document were developped in this context and focus on GIFT-COFB [BCI+21]2, one
of the 10 NIST LWC finalists, which is based on the GIFT-128 block cipher [BPP+17].

2 Implementation details

The first-order secure implementations presented in this document are based on a
previous work employing an advanced bitslicing technique named fixslicing [ANP20].
Therefore, all the code consists of bitwise operations only, which eases the integration
of Boolean masking. Non-linear operations (i.e. AND and OR gates) are computed
without additional randomness using the techniques detailed in Algorithms 1 and 2.

Algorithm 1: First-order Boolean masked AND gate without additional ran-
domness from [BDCU17]

Input: (x1, x2) s.t. x = x1 ⊕ x2 ; (y1, y2) s.t. y = y1 ⊕ y2
Output: (z1, z2) s.t. z = x ∧ y = z1 ⊕ z2

1 z1 = (x1 ∧ y1)⊕ (x1 ∨ ¬y2)
2 z2 = (x2 ∨ y1)⊕ (x2 ∨ ¬y2)
3 return (z1, z2)

1https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_

Implementations.pdf
2https://www.isical.ac.in/~lightweight/COFB/
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Algorithm 2: First-order Boolean masked OR gate without additional ran-
domness from [BDCU17]

Input: (x1, x2) s.t. x = x1 ⊕ x2 ; (y1, y2) s.t. y = y1 ⊕ y2
Output: (z1, z2) s.t. z = x ∨ y = z1 ⊕ z2

1 z1 = (x1 ∧ y1)⊕ (x1 ∨ y2)
2 z2 = (x2 ∧ y1)⊕ (x2 ∧ y2)
3 return (z1, z2)

The key is the only input which is split into 2 shares by the generate shares encrypt

and generate shares decrypt functions. The key schedule is computed on both
shares, independently, within a single assembly function call. At the GIFT-128 level,
the internal state is also split into 2 shares, where the initial shares are initialized to
zero (i.e. the input block is not masked).

Note that no hiding countermeasures have been integrated to these implementations
so far.

3 Results of the preliminary security evaluation

No premilinary security evaluation has been undertaken.

4 Usage example

1 #include <crypto_aead_shared.h>

2 ...

3 unsigned long long mlen = 16; // can be set to any value

4 unsigned long long adlen = 16; // can be set to any value

5 unsigned long long clen = mlen + CRYPTO_ABYTES;

6
7 unsigned char k[CRYPTO_KEYBYTES];

8 unsigned char m[mlen];

9 unsigned char c[clen];

10 unsigned char ad[adlen];

11 unsigned char npub[CRYPTO_NPUBBYTES];

12
13 mask_m_uint32_t ms[mlen/sizeof(uint32_t)+1]; // +1 in case mlen % 4 != 0

14 mask_c_uint32_t cs[clen/sizeof(uint32_t)+1]; // +1 in case mlen % 4 != 0

15 mask_ad_uint32_t ads[adlen/sizeof(uint32_t)+1]; // +1 in case mlen % 4 != 0

16 mask_key_uint32_t ks[CRYPTO_KEYBYTES/sizeof(uint32_t)];

17 mask_npub_uint32_t npubs[CRYPTO_NPUBBYTES/sizeof(uint32_t)];

18
19 /* encryption process */

20 generate_shares_encrypt(m, ms, mlen, ad, ads, adlen, npub, npubs, k, ks);

21 crypto_aead_encrypt_shared(cs, &clen, ms, mlen, ads, adlen, npubs, ks);

22 combine_shares_encrypt(cs, c, clen); // unmasked ciphertext is now stored in c

23
24 /* decryption process */

25 generate_shares_decrypt(c, cs, clen, ad, ads, adlen, npub, npubs, k, ks);

26 crypto_aead_decrypt_shared(ms, &mlen, cs, clen, ads, adlen, npubs, ks);

27 combine_shares_decrypt(ms, m, mlen); // unmasked plaintext is now stored in m

Listing 1: Usage example of the proposed API in the call for protected software
implementations of NIST LWC finalists.
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